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Abstract

The concept that a structure is capable of producing buoyancy using an internal

vacuum rather than a gas dates back to the 1600s; but material technology has restricted

the construction of such concept for common geometries, such as the sphere. Different

and often complex geometries compensate for the lack of light materials that provide the

stiffness and strength needed. Therefore, this research looks at an Lighter than Air

Vehicle (LTAV) in the form of an icosahedral frame/skin configuration using nonlinear

finite element analysis in order to determine the structural response of such vehicle, its

capacity to sustain a vacuum with both material technology that exists today and in the

near future, and its buoyancy characteristics. The structural response is characterized

with large displacements; where membrane behavior dominates the icosahedral skin

response, generating geometric stiffening in the overall structure. It is shown that those

displacements have minimal effect in the structures buoyancy, with no more than 4%

reduction. Overall, the nonlinear analysis of the icosahedral structure provided tangible

background on its behavior and the Lighter than Air Vehicle (LTAV) applicability. It is

feasibly possible to actually manufacture this type of vehicle in the very near future

depending upon newer materials with more advanced strength.
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NONLINEAR STRUCTURAL ANALYSIS OF AN ICOSAHEDRON AND ITS

APPLICATION TO LIGHTER THAN AIR VEHICLES UNDER A VACUUM

I. Introduction

1.1 Objective

Aircraft structures have been designed for more than a century with wing like

configurations; tremendous progress has been made in this direction. The research

presented in this thesis is an attempt to evaluate a different type of air structure: a

structure that relies on the effect of buoyancy through an internal vacuum to provide lift

rather than the normal wing. Therefore, the objective is to evaluate the characteristics of

LTAV subjected to a vacuum, pointing out the structural features for consideration in the

eventual design of such a vehicle.

In order to evaluate the vacuum LTAV, Archimedes principle with the ideal gas law

along with nonlinear Finite Element Analysis (FEA) with the Newton Raphson technique

are used. The Archimedes principle states that an object submerged in any fluid exerts a

buoyant force equal to the weight of the displaced fluid, establishing the relationship that

allows the design to become Lighter than Air (LTA). Furthermore, the ideal gas law

serves to express the air density in terms of pressure and altitude, proving a direct venue

between the atmospheric pressure and the pressure that the structure is subjected to. FEA

then provides the means to evaluate the nonlinear behavior of the structure and its

relationship to buoyancy.

1



1.2 Chronology of Lighter than Air Vehicles

The idea of having a structure, or a vehicle for that matter, float in air dates back to

the 1600s, when Italian monk Francesco Lana de Terzi proposed the ‘Aerial Ship’. He

wrote:

The preceding inventions did not exhaust the ardour or the curiosity of
the human intellect, but have, rather, spurred it to seek how men could, after
the fashion of the birds, also fly in the air... No one has, however, deemed it
possible so to construct a vessel that it would travel on the air as if it were
supported on water, insomuch that it has not been thought practicable to
make a machine lighter than the air itself, which it is necessary first to do in
order to accomplish the desired end [28, 11].

Figure 1: Aerial Ship: lighter that air

ship design proposed by Francesco Lana de

Terzi in 1670 [28, 15]

The main idea behind this

statement is the concept of having an object

be LTA. He proposed an LTAV composed

of four LTA evacuated spheres made

of copper supporting a basket, as shown

in Figure 1. This design brought various

objections, made by scientists of that

time and later answered by Lana, in which

all were proven wrong but one. Those

objections included the issue of evacuating

the air out of the spheres, the ’unstoppable’

rising of the vehicle once afloat, and

the capacity of the spheres to remain rigid

after evacuation [26]. First, evacuating, or
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creating a vacuum, inside any enclosed structure presents no challenge nowadays, and

back then it could be accomplished with Boyle’s air pump. Second, departing from the

fact that the air density reduces with altitude, the vehicle or structure will stop rising once

the weight of the displaced air equals the weight of structure itself. The last objection,

which challenges the capacity of the spheres to remain rigid, is still valid today. After all,

realizing that a structure could float in air was the most important finding, and underlying

basis for the LTAV concept.

In 1709, the first LTAV design in the form of a hot air balloon was launched by the

Montgolfier brothers [14]. The hot air balloon uses a heat source to reduce the density of

air inside, creating a pressure difference that produces buoyancy. This understanding led

to the creation of dirigibles. First introduced by Henri Giffard in 1852 [10], dirigibles rely

on the use of a gas inside the structure that is LTA, commonly Helium or Hydrogen, to

displace enough air volume such that the weight of the structure and the internal gas is

less than the displaced air itself, acquiring buoyancy. Dirigibles became the first air

vehicle, capable of traveling and maneuvering with the assistance of propeller and control

surfaces. A pictographic representation of the history of dirigibles development from

1850 to 1960 is shown inFigure 2. Three major design types arose: non-rigid, semi-rigid

and rigid. A rigid dirigible is one that uses a framework to retain its shape rather being

forced into shape by the internal gas, as with the non-rigid. The semi-rigid contains a

partial framework mainly used to distribute suspension and lifting loads.

Non-rigid designs have historical significance because they mark the start of the

dirigible era, given by the Giffard, shown at the lower left of Figure 2. The Giffard was 44

m (144 ft 4 in) long and hydrogen filled. In the need of carrying heavy payloads, rigid
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designs became popular, making them large compared to non-rigids and semi-rigids. The

primary rigid design was developed by the Zeppelin Company of Germany, and in fact,

the term ‘Zeppelin’ became representative of all rigid designs, most made by this

company. They were mainly recognized for their use in commercial transportation, such

as the famous Hindenburg (LZ-129), but some were used for military purposes, such as

ZR-1 used by the United States Navy [20]. The LZ-129 was 803.8 ft (245 m) long and

hydrogen filled.

Figure 2: History of Dirigibles Development from 1850 to 1960, including rigid, semi-

rigid and non-rigid designs [3]
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A historical question arises: ‘Why, after so many years of development, did the

dirigibles vanish (for the most part)?’ Dirigibles had major challenges over those years,

including their speed and control limitations, safety and poor ground handling. The

advancements of heavier than air vehicles, i.e., airplanes, during that period, such as their

high speed and control capacity, was the main reason for the disappearance of dirigibles.

Furthermore, airplanes eliminated most of the safety and handling issues. Safety mostly

relates through history with the use of hydrogen as a lifting gas. Being flammable,

hydrogen has been reported to be the cause of more than 22 accidents related to dirigibles

from 1930 to 1937 [21]. Helium, on the other hand, is a inert gas and therefore it has

been used since 1960s in dirigibles, but it being a depleting nonrenewable energy source,

has created restraint in LTAV designs throughout the years.

In the last decade, technology has driven new, safer and efficient LTAV designs. The

Lockheed P-791 hybrid air vehicle, having its first flight on January, 2006 [16], is an

example of these designs. Hybrid designs take advantage of aerodynamics in

combination to its buoyancy to produce lift and movement. These designs have solved

most of the safety and ground handling issues that previous dirigibles had, but they still

rely on Helium as the lifting gas.

In the same way, today’s advantages in materials and manufacturing techniques

makes producing buoyancy by evacuating a structure (creating a vacuum inside) an idea

that is not as far-fetched as when Lana suggested it. He suggested the use of vacuum

spheres. The sphere is the ideal shape for a vacuum LTAV since it achieves the greatest

stiffness with the minimum weight, therefore maximizing buoyancy; but a material that

has enough specific stiffness, E1/2/ρ, where E is the modulus of elasticity and ρ is the
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density1, such that an homogeneous sphere can resist a vacuum has yet to be created or

found for that matter. Therefore, designers have resorted to other geometries to

compensate the lack of material stiffness. Three of the LTAV designs found in published

literature that use an internal vacuum are mentioned here. First, A. Akhmeteli and A.V.

Gavrilin proposed the use of layered shell spheres, a sandwich construction type, and

second, T.T. Metlen considers the icosahedron and rotating cylinders. Details are

discussed in Section 2.8.

From the structural point of view of vacuum LTAV, a rigid design is needed since

there is no internal gas to force it into shape. Imagine a simple balloon: inflating it with

helium would cause it to float; since the air displaced weighs more than the balloon and

helium themselves. However, if the helium is vacated out of the balloon, the balloon

would shrink and no internal volume will be left, such that the balloon becomes heavier

than air. On the other hand, a rigid structure, or a rigid balloon for this matter, can

maintain its internal volume once vacated, provided it is stiff enough to resist the external

forces.

The research presented in this thesis tries to answer questions that arise from

Metlen’s research by evaluating the icosahedral structure with nonlinear analysis.

Therefore, the geometric characteristics of the icosahedron are presented next to provide

background on the reasoning of selecting such a geometry.

1Specific stiffness (E1/2/ρ) is a material index that establishes the relative material performance. In this
case, E1/2/ρ was used to minimize weight while maximizing stiffness. Derivation and details of this index
are discussed in Section 2.7.
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1.3 The Icosahedron as a Geometrical Shape

The icosahedron, properly called a regular icosahedron, is a regular polyhedron and

platonic solid [51]. The word ‘regular’ refers to polygons that are characterized by sides

of the same size, located symmetrically about a common center [53], such as the

equilateral triangle and the square. A polyhedron is then regular if its faces and vertex

figures are regular [54]. Furthermore, a platonic solid is a convex polyhedron (that can be

algebraically defined as the set of solutions to a system of linear inequalities) with

equivalent faces composed of regular polygons [52].

The icosahedron has several advantages that revolve around one characteristic:

symmetry. Symmetry results from the 20 equilateral triangles that form the icosahedron.

The icosahedron and its decomposition into 20 triangles is shown in Figure 3. As a

symmetry byproduct, a circumscribed sphere touches each of the 12 vertices that make

the icosahedron, such that an icosahedral radius is defined as the distance from the center

to each vertex. From the structural point of view, symmetry provides many advantages

including uniform stress distribution, simplified construction (compare to other

polyhedrons) and modeling simplifications. The latter becomes important since having a

simplified structure can yield an accurate model. One of the modeling simplifications is

the use of one triangle to approximate the behavior of the structure, done with the triangle

submodel (discussed in Section 3.5).

1.4 Challenges of Vacuum Lighter than Air Vehicle

Stiffened structures, such as monocoque structures use in airplanes, sandwich

structures used in panels and geodesic structures used in domes, provide stiffened
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Figure 3: Icosahedron, left: three dimensional shape [9], right: planar decomposition [18]

alternatives to homogeneous structures that minimize weight while increasing the critical

load2. Furthermore, new manufacturing technologies, materials and analysis techniques,

such as Finite Element Methods (FEM), allows us to consider far more complicated

structures, opening the door to new designs such as the sandwich type structure and the

icosahedron. These structures usually exhibit shell, membrane and beam like behavior3.

An internal vacuum applied to shell and beam like structures introduces various

design challenges, to include structural instability and integrity. Structural instability is a

byproduct of buckling, in the forms of bifurcation and collapse, the last an inherently

nonlinear problem. On the other hand, structural integrity relates to the structure’s

capacity of withstanding the applied load without material failure and in this case for the

deflected structure to maintain enough internal volume such that it is still buoyant. Both

2The critical load is defined as the load that produces buckling of the structure. See Section 2.6 for more
information.

3Shell and membranes are defined as structural parts that are initially curved and flat, respectively, where
their thickness is much smaller than their characteristic length [49, 1]. See Section 2.5 for more information.
A beam is defined as a structural slender part subjected to transverse loading.
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structural stability and integrity have a direct relationship with the geometric shape and

material of the structure, and can cause failure.

FEM are used in this thesis to model the behavior of an icosahedral skin reinforced

by an icosahedral frame under a vacuum. Models use nonlinear analysis to evaluate the

stability and integrity of the structure, including the behavior of the skin with respect to

its thickness and the frame response to the applied vacuum. Different materials and the

structure’s capacity to achieve buoyancy are also considered.

1.5 Assumptions and Limitations

FEA inherently includes assumptions and approximations, starting with the

discretization of a complex structure such as the icosahedron. Nonetheless, the following

assumptions where made within the FEA realm:

1. Skin Submodel4

(a) The frame remains rigid as pressure is applied.

(b) The skin acts like a membrane such that simply supported Boundary

Condition(s) (BC) along the triangle edges are used5.

2. Frame Submodel6

(a) All the load applied to the skin is distributed directly to the frame with no

moments.
4Model details in Section 3.5
5A convergence study is conducted using both membrane and shell elements against analytical solutions.

See Chapter 3.
6Model details in Section 3.6
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(b) Frame members act like beams; beam elements are therefore used for

analysis.

3. Icosahedron Model

(a) The skin behaves as a membrane such that only the displacement Degrees of

Freedom (DOF) are tied to the frame members.

(b) The skin edges displace along with the frame edges, therefore frame and skin

edges share nodes.

4. All materials are modeled as linear elastic. Finding realistic material properties that

allow the icosahedron to achieve positive buoyancy is critical, therefore having

material properties tied to material names while making the isotropic assumption

provides perspective while maintaining simplicity.

5. The air behaves as an ideal gas, limiting the maximum altitude at which the

buoyancy equations are valid to 65,000 ft.

1.6 Overview

• Chapter I: States the objective of this thesis, the chronology of LTAV, the

icosahedron as a geometrical shape and the challenges of an LTAV.

• Chapter II: Summarizes theory presented in relevant literature related to the

structural behavior and failure modes of shell and beam like structures along with

the buoyancy relationships of the icosahedron.
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• Chapter III: Presents the development of the different models used in this thesis, to

include the modeling processes, the Finite Element (FE) techniques and the

convergence studies.

• Chapter IV: Presents the icosahedron models’ results and comparison for different

material properties.

• Chapter V: Summarizes the research, and presents conclusions drawn, their

significance, and recommendations for future research.

• Appendix A: Includes the tabulated results of the different studies made in order to

develop the icosahedron model.

• Appendix B: Includes the Python codes used to create, analyze and extract results

from the different models considered.

• Appendix C: Includes all the Matlab codes used to run the icosahedron models and

extract their results.
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II. Theory

2.1 Overview

The effect of this research expands two main areas: the understanding of the

icosahedron’s structural behavior and its applicability to LTAV subjected to a vacuum.

The field of structures subjected to an internal vacuum has limited published literature,

with no literature found on the structural instability of an icosahedron subjected to a

vacuum. Furthermore, only two published researches were found related to LTAV

subjected to an internal vacuum. On the other hand, individual structural components

have been extensively studied.

The purpose of this chapter is three-folded: (1) to state the principles of LTAV;

(2) to summarize the research that has been done on vacuum LTAV and subjects related to

the behavior of the icosahedron’s structural components; and (3) to state its relationship

to the research presented in this thesis. The discussion starts with the Weight to

Buoyancy Ratio (W/B) concept, its applicability to the icosahedron, and the effect of

altitude on structural loading and W/B. Then it moves to a discussion of nonlinear

analysis, followed by the structural instability, failure and the behavior of membranes and

shells. Then, relevant materials and their properties are considered; finalizing with the

summary of vacuum LTAV research.

2.2 Weight to Buoyancy Ratio

“Any object, wholly or partially immersed in a fluid, is buoyed up by a force equal to

the weight of the fluid displaced by the object.”, Archimedes of Syracuse [22]. In other
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words, Archimedes principle states that when a body is submerged in a fluid, a vertical

(buoyant) force equal to the weight of fluid displaced by set body is produced. In a fluid

column, pressure increases as altitude decreases, caused by the weight of the overlying

fluid. Thus, a submerged body experiences a greater pressure at the bottom of the column

than at the top. If the weight of the immersed body is more than the weight of the fluid it

is displacing, the body will tend to sink. On the other hand, if the weight of set body is

less than the weight of the fluid it is displacing, the body will tend to float. The point at

which both weights equal is the point of neutral buoyancy, where the body remain static

provided no other force is exerted on or by the body. Ergo, in order for a body to be

buoyant, its weight has to be less that the weight of the fluid displaced by it. This

relationship among body and fluid weights results in the W/B concept.

The W/B is a concept that establishes how buoyant a structure is with respect to its

own weight. In ideal conditions, this ratio tends to zero, such that its weight is much less

than its buoyant force, producing lift. In case of the icosahedron subjected to a vacuum,

we have two main components, the frame and the skin, as shown in Figure 4. The

icosahedron W/B is then given by:

W
B

=

(
Mskin + M f rame + Mair,i

)
g

Mair,og
=

Vskin ρskin + V f rame ρ f rame + (Vi − Vr) ρair,i

(Vi − Vr) ρair,o
(2.1)

where:

B = buoyancy of the structure

g = acceleration of gravity

Mair,i, Mair,o = internal and external air masses, respectively
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Figure 4: Icosahedral Frame/Skin Combination - skin (left half), frame(right half) [31]

M f rame, Mskin = frame and skin masses, respectively

V f rame, Vskin = frame and skin volumes, respectively

Vi = icosahedron internal volume before deformation

Vr = icosahedron internal volume reduction

W = weight of the structure

ρair,i, ρair,o = internal and external air densities, respectively

ρ f rame, ρskin = frame and skin densities, respectively

The internal volume reduction accounts for the deflection of the loaded skin and/or

any internal component. The internal and external air densities, ρair,i and ρair,o, are

variables that depend on altitude and amount of vacuum applied. To express the air

densities in terms of pressure, the air can be modeled as an ideal gas using the ideal gas

law given by:

P = ρRT (2.2)
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where:

P = pressure

ρ = air density

Rs = air specific gas constant

Using the ideal gas law to express the densities in terms of pressure and temperature,

provides the means to relate the buoyancy of the icosahedron with altitude and vacuum

level, extending the design envelope of these equations. Substituting Equation (2.2) into

Equation (2.1) results in:

W
B

=
Vskin ρskin + V f rame ρ f rame + (Vi − Vr)

(
Pair,i

RTair,i

)
(Vi − Vr)

(
Pair,o

RTair,o

) (2.3a)

W
B

=
Vskin ρskin + V f rame ρ f rame

(Vi − Vr)
(

Pair,o

RTair,o

) +
Pair,i

Pair,o

Tair,o

Tair,i
(2.3b)

where:

Pair,i, Pair,o = internal and external air pressures, respectively

Tair,i, Tair,o = internal and external air temperatures, respectively

Equation (2.3) serves to calculate the W/B of the icosahedron for any altitude below

20 km (65,000 ft) [17] and vacuum (partial or total). For a partial vacuum, the remaining

internal pressure counteracts the external pressure, such that the pressure “felt” externally

by the skin is given by:

Papplied = Pair,o − Pair,i (2.4)

where: Papplied = air pressure applied to or ‘felt’ by the skin

If a total vacuum is achieved, the second term of Equation (2.3b) goes away since no

air remains inside, such that Papplied equals the Sea Level (SL) pressure.
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Considering the icosahedron volume, one should note that a circumscribed sphere

touches each of the vertices, such that the radius, r, is measured from the center to any

vertex. In addition, an inscribed sphere with radius, ri , touches each triangle at the

centroid. Now consider a mid-plane perpendicular to an imaginary line drawn in between

opposite vertices, extracted from Figure 5a and shown in Figure 5b by the dotted line,

where A and B are two vertices on the mid-plane, as shown in Figure 5b. Then,

r = OA = OB, where O is the icosahedron center. The center cutout shown in Figure 5a

has 10 faces around, therefore the angle OAB is 36◦. Then,

OC = AC cot18◦ = BC cot18◦ (2.5)

(a) Partitions (b) Mid-plane (c) Equilateral Triangle

Figure 5: Icosahedron Decomposition

Also consider one of the equilateral triangular faces with the points A, B, C, D, F

and P, as shown in Figure 5c. Then, ri = OP. Given the triangle’s edge length, the height

(DF) can be obtained with the Pythagorean theorem, as follows:
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l2
beam

= DF2 +

(
lbeam

2

)2

⇒ DF = h =

√
3

2
lbeam (2.6)

where:

h = height of the triangle

lbeam = edge length

Now, knowing that the the angle between sides is 60◦, the centroid (DP) is given by:

DP =
lbeam

2
tan 30◦ =

√
3

6
lbeam (2.7)

Since it is an equilateral triangle, AC = lbeam/4, Equation (2.5) becomes:

OC =
lbeam

4
cot18◦ (2.8)

Then, given that OCP is a right triangle, the Pythagorean theorem can be used in

Equation (2.6), Equation (2.7) and Equation (2.8),

OP2 = OC2 −CP2 = OC2 − (CD − DP)2 = OC2 − (h/2 − DP)2

=
l2beam
16 cot218◦ −

( √
3

4 lbeam −
√

3
6 lbeam

)2
= l2

beam

(
cot218◦

16 − 1
48

)
ri = OP = lbeam

√
cot218◦

16
−

1
48
≈ 0.7558lbeam (2.9)

Equation (2.9) provides the radius of the inscribed sphere with respect to the edge

length. In the same fashion, the radius of the circumscribed sphere (icosahedron radius)

is obtained with respect to the edge length:

OF2 = OP2 + FP2 = OP2 + (h − DP)2

OF2 ≈ (0.7558lbeam)2 +
( √

3
2 lbeam −

√
3

6 lbeam

)
r = OF ≈ 0.9511 lbeam (2.10)
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Finally, the volume of the icosahedron can be represented by 20 pyramids of height ri,

such that:

A =

√
3

4
l2
beam (2.11)

Vi = 20
[(

1
3

A
)

ri

]
=

5
12

(
3 +
√

5
)

l3
beam (2.12)

where:

A = area of an equilateral triangle

Vi = icosahedron internal volume

Equation (2.10) and Equation (2.12) were verified with Reference 29 and

Reference 51. Both equations are used to develop the W/B equations for the frame and

the skin in terms of the icosahedron radius.

It is desirable to select geometric properties that allow for the icosahedron to achieve

buoyancy, i.e., W/B < 1. But Vr depends on the analysis results and the geometric

properties are needed in order to establish the model. Nonetheless, assuming that:

• No internal volume is lost due to the skin displacement or internal components,

• The material densities remain constant throughout the analysis,

• A total vacuum is achieved, and

• The structure is vacated at SL altitude,

provides a method of estimating the geometric properties of each component given a

desired W/B.
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2.2.1 Skin W/B.

Provided that the skin is composed of 20 equilateral triangles, the volume can be

represented using Equation (2.11):

Vskin = 20
 √3

4
l2
beam

 tskin = 5
√

3tskinl2
beam (2.13)

where: tskin = icosahedral skin thickness

Using the assumptions previously stated7 and considering the skin separate from the

frame, the skin thickness can be derived for a skin W/B set value. Equation (2.1) then

reduces to:
W
B skin

=
Vskin ρskin

Vinternal ρair
(2.14)

where: ρair = density at SL

Substituting Equation (2.10) in Equation (2.12) and Equation (2.13), and then

combining them with Equation (2.14), the skin thickness is:

tskin ≈
r ρair (W/Bskin)
3.77523 ρskin

(2.15)

Equation (2.15) is used in all the analyses related to the skin to estimate a tskin that

provides a desired W/B.

2.2.2 Frame W/B.

As done for the skin, the geometric properties of the frame can be obtained for a

specific W/B. In this case, a circular cross-section is selected for frame beams; therefore,

two geometric parameters arise: the beam radius and beam thickness. the beams radius
7Assuming that there is no internal volume loss due to the skin displacement or internal components,

that the the skin displacement causes no change in its volume, that a total vacuum is achieved and that the
structure is vacated at SL altitude.
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and thickness. A pictographic representation is shown in Figure 6. In order to solve for

them, the following relationship is established:

tbeam = c rbeam f or 0 < c ≤ 1 (2.16)

where:

rbeam = beam radius

tbeam = beam thickness

Figure 6: Beam Profile

With Equation (2.16) and knowing that the icosahedral frame is composed of 30

beams, the volume can be obtained in terms of c as follows:

V f rame = 30π
(
2rbeamtbeam − t2

beam

)
lbeam = 30πr2

beam

(
2c − c2

)
lbeam (2.17)

Once again, using the assumptions previously stated8 and considering the skin

separate from the frame, Equation (2.1) reduces to:

8Assuming that there is no internal volume loss due to the skin displacement or internal components,
that the the skin displacement causes no change in its volume, that a total vacuum is achieved, and that the
structure is vacated at SL altitude.
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W
B f rame

=
V f rame ρ f rame

Vinternal ρair
(2.18)

Substituting Equation (2.10) in Equation (2.12) and Equation (2.17), and then

combining them with Equation (2.18), the beam radius for 0 < c ≤ 1 is:

rbeam ≈ r

√
(W/B f rame) ρair

39.0742
(
2c − c2) ρ f rame

(2.19)

Equation (2.19) is used in all the analyses related to the frame to estimate a rbeam that

provides a desired W/B. Note that for a solid beam, c = 1.

2.2.3 Icosahedron W/B.

It is important to include all the effects -altitude, vacuum (partial or total), and

volume reduction- in the W/B calculation. Substituting Equation (2.13) and

Equation (2.17) in Equation (2.3b), which accounts for all these effects, results in:

W
B

=
5
√

3tskinl2
beam ρskin + 30πr2

beam

(
2c − c2

)
lbeam ρ f rame

(Vi − Vr)
(

Pair,o

RTair,o

) +
Pair,i

Pair,o

Tair,o

Tair,i
(2.20)

Then substituting Equation (2.10) and Equation (2.12) in Equation (2.20) and

simplifying, results in:

W
B

=
9.5745tskin r2 ρskin + 99.098

(
2c − c2

)
r2

beam r ρ f rame[
2.5362r3 − Vr

] ( Pair,o

RTair,o

) +
Pair,i

Pair,o

Tair,o

Tair,i
(2.21)

Equation (2.21) along with Equation (2.4) are used to calculate the resulting W/B as

the structure deforms due to the applied pressure. Note that Equation (2.21) is applicable

for any icosahedron radius and any skin and frame materials, as long as the following

criteria is meet:
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• Material homogeneity: both frame and skin densities remain constant within each

part.

• Geometric homogeneity: both frame and skin geometry, rbeam and tskin, remain

constant through the icosahedron.

• Moderate dimensions: if rbeam and tskin are large compared to each characteristic

length, the icosahedron radius, r, needs to be adjusted individually to compensate.

At this point, the W/B needs to be reconsidered along with the FEA technique.

• The altitude considered is less that 65,000 ft.

2.3 Air Properties with Altitude

Creating an internal vacuum in any enclosed structure that is exposed to the

environment, generates pressure forces on the structure’s external surfaces to try and

balance the pressure difference. The amount of external pressure depends on the amount

of vacuum generated and the altitude. The barometric formula shown below indicates the

changes in air pressure versus altitude.

P = Po exp
(
−

g
RsTo

H
)

(2.22)

where:

H = altitude

Po = SL pressure

Rs = specific gas constant

To = temperature at SL
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Figure 7: Air Properties vs Altitude [50]

Note that pressure changes exponentially with altitude. The changes in pressure and

altitude are graphed in Figure 7, along with changes in density and temperature. Note that

maximum pressure and density are achieved at SL. As seen in Equation (2.1), having the

lowest denominator is ideal since it improves buoyancy, and the latter is maximized when

all the air volume is extracted, considered a perfect vacuum, and the structure is at SL.

Therefore, the standard air properties, pressure (101,325 Pa), density (1.2041 kg/m3) and

temperature (288.15 K), are used in this thesis for the calculations of W/B and applied

load [1].
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2.4 Nonlinear Analysis

Historically, the use of linear analysis tools to describe the behavior of a body under

load has been preferred. These tools provide an acceptable approximation for most

real-life problems. Their availability and simplicity make them an attractive choice over

the complexities brought by nonlinear analysis tools. But there are problems that require

nonlinear analysis in order to capture the ‘true’ structural behavior. In order to solve such

problems, algorithms have been developed and included in computer software, most

commonly referred as FEM, which use the governing equations along with numerical

solution methods to solve for the structural response. One of the most common solution

techniques is the Newton Raphson. Summaries of nonlinear relationships in structure

behavior and the Newton Raphson method follow.

2.4.1 Nonlinearities.

The term “stiffness” is a property that characterizes the structural response of a body

subjected to loading. In general, the structure’s stiffness changes as it is being deformed.

But if small deformation occurs, the structure can retain the stiffness that it had prior to

loading; this is what is characterized as linear behavior. When large deformation occurs,

the structural stiffness changes, causing nonlinearities [4]. The nonlinearities are

described by the governing equations. Geometric nonlinearity, found in the strain

displacement relationships and the equilibrium equations, is characterized by a change in

geometric shape. Material nonlinearity, found in the constitutive laws, usually result from

structure straining past the yielding point [42, 21]. Therefore, these two nonlinearities are

treated independently. In this thesis, geometric nonlinearity is particularly important

since large deflections are expected. Large deflections come as a byproduct of the weight
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restrictions given by the nature of LTAV, and drive the geometric parameters of the

icosahedron. Therefore, only geometric nonlinearity is considered.

When using FEA to evaluate a structure that exhibits nonlinear behavior, several

considerations need to be taken into account. First, the force direction. Large

deformation can cause a change in force direction. Two cantilever beams subjected to a

concentrated force are shown in Figure 8. In Figure 8a, the force remains normal to the

beam as it displaces; this force is called a follower force. In Figure 8b, the force retains

its original direction as the beam displaces; this force is called a non-follower force. In

the same way that large deformations affect the force direction, the force direction affects

a structure with large deformations. FEA software usually provides the option of

selecting the type of force you wish to use for the model.

(a) Follower Force (b) Non-follower Force

Figure 8: Follower and Non-Follower Forces. A follower force changes its direction during

the process of deformation and remains normal to the deformed beam (left). A non-follower force

retains its original direction (right) [4].
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A good example is the icosahedron itself. The icosahedron is subjected externally to

the atmospheric pressure, and pressure always acts normal to the surface (follower force).

While linear analysis considers no geometric changes, realistic analysis includes

geometric nonlinearity to account for those changes.

Another consideration is stiffness change. An example is a flat shell (capable of

carrying both bending (out-of-plane) and membrane (in-plane) stiffnesses) subjected to a

pressure load. Initially, the flat shell resists the pressure only with its bending stiffness.

After some deformation has developed, the shell acquires membrane stiffness, stiffening

the shell as the pressure increases. In this case, nonlinear analysis is required regardless

of having small or large deformations. Note that the icosahedral skin, composed of

initially flat triangles, depends on nonlinearity to develop membrane stiffness.

Other geometrically nonlinear considerations include buckling (discussed in

Section 2.6) and post buckling behavior, supports that cause changes in the structure’s

stiffness, and contact problems.

2.4.2 The Newton Raphson Method.

The Newton Raphson method is an iterative technique that solves nonlinear

equations. In the case of FEA, this technique solves the nonlinear static equilibrium

equations that govern the structural behavior of a model by diving the loading in small

steps and finding the solution path in an incremental fashion. The following discussion,

based on the work of A.N. Palazotto and S.T. Dennis [42, 70, 131-134], summarizes such

a method for a one-dimensional case.

The nonlinear static equilibrium equations resulting from a finite element

discretization are in the form of:
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KT ∆q = −F(q)[
K + N1 (q) + N2

(
q2

)]
∆q = −

[
K + 1

2 N1 (q) + 1
3 N2

(
q2

)]
q + R

(2.23)

where:

K = linear stiffness matrix

KT = tangent stiffness matrix

N1 = linear function of q

N2 = quadratic function of q

q = nodal displacements vector

R = nodal loading vector

Given that at the first load increment, R1, q = 0, Equation (2.23) reduces to a linear

equation:

Kq1 = R1 (2.24)

such that KT = K, the slope of the load versus displacement curve at q = 0; this would be

the first iteration. In the second iteration, q1 is substituted in Equation (2.23) to solve for

the increment ∆q1, as shown below:

[
K + N1 (q1) + N2

(
q2

1

)]
∆q1 = −

[
K +

1
2

N1 (q1) +
1
3

N2

(
q2

1

)]
q1 + R1 (2.25)

The right side of Equation (2.25) is the residual force vector ∆R1 that is left by the

second iteration. The displacement q is then updated as follows,

q2 = q1 + ∆q1 (2.26)

Iteration continues until the residual force vector ∆Rn becomes small, signifying that the

equilibrium equations are satisfied for the first load increment. The process is repeated
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for the next load increment, R2, as shown in Figure 9 until convergence. Points A and B

represent the solutions for load increments 1 and 2.

Figure 9: Newton Raphson Algorithm: second increment [42, 133]

In reality, discretized models have multiple DOF, therefore instead of having one

load versus displacement curve, there are as many curves as DOF. For such cases, a

global convergence criterion is established, such as:

√∑
i
(
qi

r
)2
−

√∑
i

(
qi

r−1

)2√∑
i

(
qi

1

)2
x100% ≤ TOL (2.27)
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where qi
r, qi

r−1 and qi
1 are the elements of q (i = 1 to n DOF) for the rth, (r − 1)th and

first iterations for a given load increment, and TOL is user defined, typically taken as

0.1%. A drawback of the Newton Raphson method is its inability of crossing points

where the load versus displacement slope is zero. For these cases, a displacement driven

method, or the Riks method [12, Ch. 6.2.4], which varies the load and displacement

simultaneously, is used.

2.5 Membranes, Plates and Shells

There are many applications using plates, membranes and shells components in

structures. Therefore published solutions are largely available for common geometries

such as the circle, rectangle, sphere and cylinder.

Literature commonly refers to plates and shells as structural parts that are initially

flat and curved, respectively, where their thickness is much smaller than their

characteristic length [49, 1]. Shell are characterized by both bending, out-of-plane, and

membrane, in-plane, stiffnesses; therefore used for, among many others, cylindrical and

spherical applications. On the other hand, plates are primarily characterized by their

bending stiffness, therefore used for applications where a load is applied normal to a

surface in which small deformations occurs. The membranes then result from two

scenarios: plates with in-plane applied forces and thin plates with out-of-plane applied

forces. For the first scenario, in-plane forces produce no bending stiffness, developing all

its resistance through its membrane stiffness. For the second scenario, the plate becomes

thin enough that the bending stiffness becomes negligible. At that point, large

deformations tend to occur and membrane stiffness is developed as it deforms. All three

types of parts consider displacement values from the middle surface. A pictographic
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representation of the stiffness distributions for the plate, membrane and shell are shown in

Figure 10. Note that while the shell has both bending and membrane stiffnesses

(Figure 10c), the plate and membrane have bending (Figure 10a) and membrane

(Figure 10b) stiffnesses only, respectively.

(a) Plate (b) Membrane (c) Shell

Figure 10: Stiffness Distribution of Plates, Membranes and Shells

Considering one of the equilateral triangles of the icosahedron and the importance of

weight for an LTA application, researchers were initially focused in solutions for flat

membranes subjected to a uniform distributed load (also called uniform pressure). Since

no membrane solution for an equilateral triangle was found9, circular and square

solutions were reviewed for the purpose of FEM validation.

S. Timoshenko and S. Woinowsky-Krieger suggest membrane solutions for both

circular and square geometries with large deflections. The circular solutions are derived

from the equilibrium equations developed for a circular plate that also carries membrane

forces, but neglecting the terms that relate to bending [45, 402], assuming the vertical

deflection takes the form:

w = wo

(
1 +

r2
c

a2
c

)2

(2.28)

9A.C. Ugural has a plate solution for equilateral triangle subjected to a uniform pressure [49, 98-100].
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where:

ac = circle’s radius

rc = radial position at which the displacement is evaluated (0 ≤ r ≤ ac)

w = vertical displacement

wo = center displacement

and then solving for wo iteratively. The circular displacement and stress solutions are then

given by Equation (2.29) and Equation (2.30) [45, 400-404]:

w = wo

(
1 +

r2
c

a2
c

)2

where wo = 0.662ac

(Pac

Et

)1/3

(2.29)

S o = 0.423
(

EP2a2
c

t2

)1/3

(2.30)

where:

E = modulus of elasticity

P = applied pressure to the surface

S o = stress at the center

t = membrane thickness

These solutions are based on a Poison’s ratio, ν, equal to 0.25 and fixed BC along

the edges, and assume linear elastic material properties. Both equations show that the

deflections and stresses vary as the cube root of the pressure. In the case of the square

solution, Timoshenko and Woinowsky-Krieger use energy methods along with assumed

displacement fields to find the solution of a square membrane. They define the strain

energy solely due to stretching of its middle surface as [45, 419-420]:
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Vs =
1
2

∫ ∫ (
Nxεx + Nyεy + Nxyγxy

)
dxdy (2.31)

where:

Vs = strain energy

Nx = membrane force in the x direction

Ny = membrane force in the y direction

Nxy = membrane force in the xy direction

εx = strain in the x direction

εy = strain in the y direction

εxy = strain in the xy direction

Equation (2.31) is then put in terms of displacement fields, followed by inserting the

assumed displacement fields shown in Equation (2.32), and using the principle of virtual

displacements to solve for wo and cs.

u = cs sin
πx
2as

cos
πy
2as

; v = cs sin
πy
2as

cos
πx
2as

; w = wo cos
πx
2as

cos
πy
2as

(2.32)

cs = 0.147
w2

o

as
& wo = 0.802as

(Pas

Et

)1/3

(2.33)

S o = 0.396
(

Eq2a2
s

t2

)1/3

(2.34)

where:

u, v, w = x, y, out-of-plane displacements

as = half the edge length
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Figure 11: Square Membrane Geo-

metrical Definitions [45, 420]

These solutions are also based on a

ν = 0.25 and fixed BC along the edges. Geometric

definitions are shown in Figure 11. Note that

the maximum displacement occurs at the center,

when x = y = 0. As with the circular solution, both

equations show that the deflections and stresses

vary as the cube root of the pressure. Furthermore,

comparison between the circle and square’s

equations shows that the center displacement and

stress vary only by 5% and 2%, respectively, when the circle diameter equals the square

edge length.

P. Seide found an alternate solution for the square membrane by iteratively solving

the Fȯppl’s large deflection equations and Airy’s stress function [47]. He found that the

center displacement is given by:

wo = 0.2866t
 q
E

(
b
t

)41/3

= 0.722a
(qa

Et

)1/3
(2.35)

where: b = membrane’s edge length (b = 2as, as previously defined in

Timoshenko’s solution). Seide’s solution assumes a ν = 0.3. Disregarding the 0.5

difference in Poison’s ratio between solutions10, Seide’s solution (Equation (2.35))

predicts a center displacement that is 90% of the one predicted by Timoshenko and

Woinowsky-Krieger’s solution (Equation (2.32)). All these solutions are used to validate

the FEM and run convergence studies. See Section 3.4 for more details.

10Changes of ν between 0.1 and 0.4 only affects the membrane solution by 10%. See Section 3.5.3 for
more details.
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2.6 Material, Buckling and Collapse Failures

Different failure modes exist on a structure subjected to loading, including material,

buckling and collapse. Material failure is related to the material’s capacity to withstand

stress, in other words, its strength. Buckling failure, on the other hand, is related to the

structure’s geometry. Collapse also relates to the structural geometry, but is characterized

by global failure. All failure modes are related to the structure’s stiffness, which is a

combination of the stiffnesses provided by the material and geometrical shape.

2.6.1 Material Failure.

Material failure comes as a byproduct of the stresses produced by the applied load

on the structure. The point at which the material fails can be defined as when the stresses

reach the yielding point, the ultimate point or somewhere in between. Ductile materials

exhibit both points, where plasticity occurs in between the two points. On the other hand,

brittle materials tend to either lack the yielding point or the same is very close to the

ultimate point.

Considering ductile materials, there are several failure criteria that predict the failure

of a structure, including the Von Mises yield criterion. The von Mises criterion, also

known as the maximum distortion energy criterion, states that failure occurs when the

energy of distortion reaches the same energy for yielding in uniaxial tension. The

following equations shows the von Mises criteria:

√
1
2

[
(σ11 − σ22)2 + (σ22 − σ33)2 + (σ11 − σ33)2 + 6

(
σ2

23 + σ2
31 + σ2

12

)]
≡ S f /S F (2.36)
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where:

S F = safety factor

S f = design failure point

σn = stress in the directions n = 1, 2, 3

Material failure, either by yielding or breaking, becomes an important consideration

when evaluating both the icosahedral skin and frame, particularly in the skin/frame

connections where stress concentrates.

2.6.2 Buckling.

Figure 12: Fixed Column Subjected

to a Concentrated Load

Buckling can be defined as an instability

phenomena where a structure is unable to recover

from its initial state of equilibrium after been

disturbed. In general, a loaded structure is said

to be in state of equilibrium if for all displacements

from the equilibrium state, restoring forces arise

such that the structure moves back to equilibrium.

Consider the simple case of fixed end column,

as shown in Figure 12. A force P applied at the top

but away from the centroid causes a moment about

O which tends to bend the column; on the other

hand, elastic forces created by its stiffness tend to restore it to its equilibrium position,

remaining statically stable. As P increases, there is a point at which the bending moment

is so high that the column’s stiffness is insufficient to restore it, becoming unstable. At

that point the column has buckled and P becomes the critical load. Linear theory, derived
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with the Euler-Bernoulli beam equation, shows that the critical load is given by

Equation (2.37) [46, 496]:

Pcr =
π2EI
4L2 (2.37)

where:

I = area moment of inertia

L = column length

Pcr = critical load

Once buckling occurs on a structure, its stiffness changes thus causing nonlinear

response, called post-buckling. The post-buckling response ends once the structure is not

capable of carrying any load. At this point, the structure is said to have collapsed.

2.6.3 Collapse.

Collapse is a geometric phenomenon where the structure suddenly loses its capacity

to resist the applied loading and its geometry distorts; at that point the structure becomes

globally unstable. Collapse can result from ‘local’ buckling, e.g, buckling of some

icosahedral frame11 beams triggered by unsymmetrical loading causes the whole

icosahedron to loose its stiffness. Numerically, structural collapse can be characterized as

the moment at which the structure shows a negative stiffness and it must release strain

energy in order to remain in equilibrium [12, Ch. 6.2.4].

The behavior of a structure close to its collapse point usually displays nonlinear

nature. The Newton Raphson method described in Section 2.4.2 works well for nonlinear

problems, but it is unable to cross the buckling points. The Riks method is recognized for
11The term ‘frame’ most commonly refers to a structure composed of an array of beam members

(members that resist both axial and bending loads), which is the case of the icosahedral frame.
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its capacity to trace the buckling and post-buckling behavior up to the structural collapse

point. The importance of tracing the post buckling behavior can be easily seen by

considering the snap-through of a aluminum can. The snap-through behavior of an

aluminum can is shown in Figure 13, both prior to buckling (Figure 13a) and after

buckling (Figure 13b). Note that the can still retains its load-bearing capacity after

buckling.

(a) Pre-buckling (b) Post-buckling

Figure 13: Aluminum Can Snap Through [4]

A common aeronautical application is the use of thin walled stringer stiffened panels

in fuselage structures. R. Degenhardt, H. Klein, A. Kling, H. Temmen and R.

Zimmermann studied the behavior of a stringer stiffened carbon-fiber-reinforced polymer

panel subjected to quasi-static compressive loading, the type of loading wing panels are

subjected to, using both experimental and FE methods [15]. In the FEA, they

superimpose the mode shapes from a linear buckling analysis into the initial geometry to
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create artificial ‘imperfections’, and then use the nonlinear Newton Raphson technique

with adaptive stabilization. In contrast, they use optical digitizing to measure the

imperfections of the real panel when conducting experiments. Scaled load versus

shortening curves for the panel are shown in Figure 14. The panel shows buckling at

about a scaled shortening of 2, and collapse is seen at about a scaled shortening of 3.5.

Since the Newton Raphson technique is being used, collapse is not captured (see the

ABAQUS/Standard curve). Collapse of such panels usually results from buckling of their

stiffeners. The buckling of the skin depends on its thickness and radius of curvature. As

the radius of curvature increases, more panel bending stiffness shifts to membrane

stiffness, increasing its critical pressure, since buckling results from the bending effect.

Figure 14: Panel Collapse: Load-shortening Curves [15]
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When analyzing the icosahedron, locating the collapse point is particularly

important. As pressure is transferred from the skin to the frame, each frame member is

subjected to both axial and transverse loads, becoming vulnerable to buckling. On the

other hand, the icosahedral skin does not exhibit collapse in the form of buckling for two

reasons. First, the frame/skin icosahedral configuration subjected to a uniform pressure

only produces tensile stress on each one of the skin triangles. Second, having the skin act

as a membrane eliminates the bending stiffness, ergo, no bending moment would be

present to develop the compressive foces that cause buckling.

2.7 Materials Research

Designs demand different material characteristics that depend on their applications

and requirements. In case of an LTAV, the most important characteristic tends to be

density, but stiffness and strength are also relevant factors. On the other hand, the

pressure difference created by an internal vacuum on a vacuum LTAV puts significant

strain on the structure, therefore maximizing stiffness and strength while minimizing

density is desired.

Establishing the effects of different materials on the performance of a structural

component allows for an optimal selection of materials. Given a design objective, a

performance index is developed that relates the structural response of a component to the

material characteristics. These indexes are function specific, therefore they try to

maximize an aspect of the component’s performance. Consider the icosahedral

skin/frame subjected to the pressure created by the internal vacuum. Part of that pressure

‘felt’ by the skin is transferred to the frame as a distributed load in each beam. If each

beam is treated as a separate component, material indexes can be developed to guide the
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material selection of the icosahedron. Now consider a simple supported beam subjected

to a distributed load, as shown in Figure 15. The objectives in this case are to minimize

the beam’s weight while maximizing its stiffness and strength. Let consider the first

objective: stiffness. One can relate the displacement and weight of the beam to its

stiffness as follows:

Figure 15: Simply Supported Beam with Distributed Load [23]

S =
k
δ

=
384EI

5L4 (2.38)

W = ALρ (2.39)

where:

A = profile area

I = moment of inertia

L = beam length

S = stiffness

k = distributed load

W = beam weight
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ρ = density of the material

δ = maximum displacement

Considering a circular profile, I = π
4 rbeam and A = πr2

beam. Then substituting I in

Equation (2.38) and solving for rbeam:

rbeam =

(
20L4S
384πE

)1/4

(2.40)

Then, substituting A in Equation (2.39) where rbeam is given byEquation (2.40),

results in:

W = πLρ

√
20L4S
384πE

= e
ρ

E1/2 (2.41)

where: e = constant

Equation (2.41) establishes an index that relates the beam’s weight and its stiffness. In

order to minimize the weight, the ratio (E1/2/ρ) needs to be maximized. This index is

called the specific stiffness, and it applies to other loading types. For example, the

maximum displacement solution for a beam subjected to a concentrated load, P, is

(PL3)/(48EI). Since this loading also produces bending, the index remains the same.

Therefore, the specific stiffness index is independent of the load type, as long as that load

produces bending. Furthermore, the BC selection, e.g., fixed, simply supported or

cantilever, does not affect the index either. Now considering strength, the stress due to

bending is given by:

σb =
Mby

I
(2.42)

where:

Mb = bending moment

41



y = distance from the neutral axis

σb = bending stress

Considering that the maximum stress occurs at y = rbeam, and substituting I in

Equation (2.42), produces:

σ f =
Mby

I
=

4Mb

r3
beam

(2.43)

where: σ f = design failure stress

Substituting A and Equation (2.43) in Equation (2.39), results in:

W = πLρ
(
4M
σ f

)2/3

= e
ρ

σ2/3
f

(2.44)

Once more, in order to minimize the weight, the ratio (σ2/3
f /ρ) needs to be

maximized. This ratio is called the specific strength index. Is important to state that the

index is dependent on the beam profile. For example, a beam with a rectangular profile

with fixed height and free width, has a specific stiffness index given by E/ρ [6].

Considering the icosahedral skin, a high specific stiffness is critical to ensure that the

loss in internal volume resulting from the skin deflection does not result in considerable

loss of buoyancy. A high specific strength in both the frame and the skin prevents failure

in connection areas where the stress concentrates.

Other designs factors include manufacturability and diffusivity. The material

properties that yield the desired specific stiffness and strength are, more often than not,

tied to the manufacturing process whereas the diffusivity tends to be a material property.

Both factors are usually overcame by new manufacturing technologies and coatings that

prevent diffusion. Therefore, this literature review focuses on finding materials that
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produce high specific stiffness and strength, such that a relationship between current

(those found on specific materials) and feasible (those needed for design feasibility)

material properties can be established.

Focusing in specific stiffness and strength, various materials searches were made

using MatWeb [7], an Internet-based material library. Materials that were selected for

comparison are shown in Table 1 (empty spaces indicates values that were not available).

Specific stiffnesses and strengths are included in columns 6 and 7-8, respectively, where

S y and S u are the yield and ultimate stresses. For the purpose of this thesis, materials are

assumed to have linear behavior. Therefore the material properties listed in Table 1 serve

as reference points, and the models considered are related to material properties, not to

the materials themselves. These indexes will be considered to establish various

icosahedron models. See Section 3.7.2 for more details.

2.8 Vacuum Lighter than Air Vehicles Concepts

2.8.1 A. Akhmeteli and A.V. Gavrilin’s Concept.

A. Akhmeteli and A.V. Gavrilin propose ‘Layered Shell Vacuum Balloons’ as an

LTA design [2]. This patent (pending) starts off by detailing an analysis of an

homogeneous spherical shell, as the one proposed by Lana (see Section 1.2). It starts off

by providing mathematical proof that an homogenenous spherical shell buckles under

atmospheric pressure for any known material, as no material has the needed specific

stiffness (E/ρ2)12 of 4.5x105[m5/(kg − s2)] [2, 5] for a ν = 0.33.
12The specific stiffness considered here is based on the buckling of a spherical shell, different from the

one defined in Section 2.7, which is based on the bending of a beam.
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Table 1: Material Selection

# Name ρ (kg/m3) ν E (GPa) Sy (GPa) Su (GPa) E(Pa)1/2/ρ Sy(Pa)2/3/ρ Su(Pa)2/3/ρ

1
UHM Unidirectional

Carbon Epoxy tubes
1870 0.3 440.00 - 3.73 355 - 1286

2 Zylon 1560 0.37 303.00 5.80 - 352 2069 -

3
Diamond like Carbon, or

Diamond thin film [43]
2700 0.12 757.00 75.70 - 322 6627 -

4 Boron Monofilament 2570 0.33 400.00 - 3.60 246 - 914

5
Nanocyl NC7000 Thin

Multi-Wall CNT [56]
1650 0.2 1000.00 10.00 30.00 606 2813 5851

6 Beryllium S-200, Tubing 1844 0.18 303.00 0.40 0.8 299 294 467

7
CoorsTek Boron Carbide

Reaction-Bonded
2650 0.18 379.00 1.70 - 232 538 -

8
Duramold-2 Cast Alu-

minum Mold Plate
2800 0.33 738.00 0.14 - 307 96 -

9
BALTEK SB.150 Struc-

tural End-Grain Balsa
247 0.33 5.76 0.02 - 307 337 -

10
Honeywell Spectra 1000

Fiber
970 0.33 172.00 - 3.00 428 - 2144

ρ = density, ν = Poison’s ratio, E = modulus of elasticity, S y = yield strength, S u = ultimate strength



It is important to realize that we have come far, material wise, from what we had

when Lana proposed the use of copper to construct hollow spheres. The specific stiffness

of Carbon Nanotubes (CNT) research grade is about 3.7x105[m5/(kg − s2)] [36], while

the cooper specific stiffness is 0.018x105[m5/(kg − s2)] [35]; and even though CNT with

such properties is not yet commercially available for shell type applications, such a

difference in specific stiffness suggests that we are not far from a feasible point.

Akhmeteli and Gavrilin claim that a sphere constructed as a sandwich type structure

where thin outer and inner layers are interconnected by a core layer provides enough

specific stiffness to resist buckling due to an atmosphere of pressure while allowing for

positive buoyancy using commercially available materials; set inner and outer layers

would have approximately the same mass while the core layer would be significantly

thicker.

Figure 16: Sandwich Panel. Made of

aluminum honeycomb core and skins

impregnated with epoxy resin [39]

Sandwich configurations indeed increase the

specific stiffness of structures due to the relatively

high stiffness of the external layers combined

with a low stiffness, low density regardless, thick

core that not only transmits shear but increases

bending stiffness as more mass is located away

from the neutral axis. A sandwich panel made of

aluminum honeycomb core and skins impregnated

with epoxy resin is shown in Figure 16.

Detailed analyses of the layered shell vacuum

balloons concept are provided in Reference 2.

2.8.2 T.T. Metlen’s Concepts.

T.T. Metlen presents various LTA concepts, including the icosahedron and the

rotating cylinders. For the icosahedron, he performed an optimization of a 1.1 ft (0.33 m)
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(a) Geodesic Sphere f = 1 (Icosahedron) (b) Geodesic Sphere f = 2

Figure 17: Geodesic Sphere [38, 47]

in radius geodesic sphere, in the form of a frame, where the objective was to minimize

the weight to buoyancy of the frame, in other words, increase the buoyancy of the frame

(detailed calculations of the weight to buoyancy ratio for the icosahedron are found in

Section 2.2). The icosahedron is the simplest version of the geodesic sphere, as, shown in

Figure 17a. If the edges of each triangle in the icosahedron are divided in two, creating

three new vertices per triangle where all the vertices lie on the surface of a circumscribed

sphere, each icosahedral triangle then becomes four triangles, as shown in Figure 17b.

The geometric frequency is then defined as the number of divisions along the edges, such

that the icosahedron represents a geodesic sphere of frequency 1, and the geodesic sphere

becomes a ‘perfect’ sphere as the frequency tends to infinity. Metlen included the

frequency as part of the optimization variables to evaluate its buoyancy effects. He

showed that a frequency of 1 (the icosahedron) is the optimal configuration. Figure 18

shows the average and maximum stresses versus frequency. Note that for the
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icosahedron, the maximum stress is equal to the mean stress. This result is attributed to

the symmetry that is otherwise lost for frequencies greater than 1, which cause

asymmetrical distribution of the pressure forces to the frame, increasing the maximum

stress on the members [38, 111].

Figure 18: Stress versus Geometric Frequency of a Geodesic Frame [38, 112]

Metlen also considered the ‘Rotating Cylinders’. The concept refers to having long

thin skin cylinders rotate about their axis of symmetry, such that the centripetal force

exerted by the skin would provide the additional stiffness needed to counteract the

atmospheric pressure when an internal vacuum is created. He proposed the vehicle shown

in Figure 19, composed of two smooth thin shell rotating cylinders mounted vertically

into a gondola with propellers.
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Figure 19: Rotating Cylinders

Vehicle [38, 56]

Considering the aerodynamics effects, the power

requirements and its buoyancy, he found that for this

vehicle to be feasible with a W/B less than 1, it would

need to be 305-3100 meters long with cylinders radius

of 1-10 meters for a W/B of 0.51, and it would need

to be launched and operated above SL altitude where

the drag is reduced by 99%, compared to the drag at SL.

2.9 Summary

The homogeneous sphere has proven to be the best geometric shape for an LTA

structure subjected to a vacuum, provided that a stiff, strong and light enough material

exists, which as of today, it does not. That drives us to try alternate geometric shapes that

provide the stiffness current materials lack. One of these geometries is the sandwich type,

which Akhmeteli and Gavrilin claim to be feasible with today’s materials. Another

geometrical shape is the frame/skin icosahedral configuration, which Metlen researched

as part of his thesis. See Section 2.8 for a summary of their proposed designs.

The lack of published literature on the icosahedron provides the opportunity to

considered classical solutions and failure theory. Membrane solutions such as the one

suggested by Timoshenko and Woinowsky-Krieger [45, 400-420], and Seide [47] provide

a venue to compare against the FEM. Buckling and material failure theory provide

background on the expected failure modes for the icosahedron, and its weakness points.

Additionally, the material review establishes feasible ground for material properties that

can be used to evaluate the icosahedron.
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The structural knowledge can be combined with the LTA concept by the W/B. The

W/B equations provide a venue of evaluating the buoyancy of the structure for any type

of vacuum and altitudes up to 65,000 ft. Furthermore, reduced forms can be used to

estimate the geometric properties needed in order to achieve the desired W/B. Given the

geometric properties and theoretical background, nonlinear analysis can be performed in

order to evaluate the structural behavior of the icosahedron, and used to calculate the

W/B of the structure accounting for the skin deflection.
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III. Model Development

3.1 Overview

The Oxford dictionary defines a model as “a three-dimensional representation of a

person or thing or of a proposed structure ...” [41]. This definition brings an important

question: what is a good representation? Answering this question requires running

experiments or tests that verify the expected performance of the system being considered,

and then making modifications as appropriate. But experimentation without proper

modeling is usually infeasible and cost ineffective. Therefore, it is the modeler’s job to

try and provide the most accurate representation of the system. In order to do that, a

validation process must be used. The difficulty of such a process depends on the

complexity of the system and whether or not research on that system exist and is

available.

In the case that the system does not exist, the validation process can be based on

current systems that are related to the one considered. In case of the system considered in

this thesis, an LTA icosahedral structure subjected to a vacuum, first: a vacuum LTAV is

yet to be constructed, and second: limited research on the structural response of an

icosahedron was found. On the other hand, the principles behind LTAV and the structural

response of individual components is well understood. Therefore, the validation process

was established based on the research found and analytical solutions of structural

components that relate to the icosahedron.

The FEA relies in the discretization of a system to evaluate its structural response.

This discretization is carried out by the use of ‘elements’ that intend to represent such a
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system, therefore the amount and type of elements that are needed to carry out a correct

representation become a question. Another question is which modeling techniques best

represent the system that is being analyzed. Other questions that arise during the

modeling process might not be related to the validation, but are rather related to the

design itself and whether some design features improve or hinder the overall performance

of the system. The following questions arose when considering the icosahedral structure:

1. How many elements are needed in order to obtain accurate results?

2. At what thickness does the skin behaves like a membrane? In other words, when is

the skin thickness thin enough to loss its bending stiffness?

3. What is the skin reaction to changes in material properties?

4. What material properties are needed such that skin deflection does not cause

significant loss of buoyancy?

5. What BC are appropriate for the icosahedral model?

6. Considering the frame performance, which is better, hollow or solid beams?

These questions needed answers prior to considering the overall structure. Figure 20

shows the studies conducted to answer such questions. First, the finite element techniques

were validated by comparing the square and circular membranes solutions, shown in

Section 2.5 against the membrane and shell elements, latter discussed in detail. Second, a

triangular model that represents the icosahedral skin was used to run convergence,

thickness and material studies. Third, a frame model with an equivalent force method

was used to run a convergence study, verify the effects of different BC and compare the
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Figure 20: Modeling Studies. Shows an overview of the studies made prior to and with the

icosahedral model in an orderly fashion.

effect of solid versus hollow beams. Finally, all the results were gathered and used to

evaluate the icosahedral model.
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This chapter starts off by discussing the process used to run all studies and analyses,

then moves to a discussion of the dimensionality selection and the rationale behind it.

Once that is established, the finite element techniques and their validation are presented.

Afterward, the studies ran with triangle and frame models and their results are discussed.

Finally, the conglomeration of techniques that are used to establish and evaluate the

icosahedral structure is presented.

3.2 Process

The FEA was conducted in this research by using Abaqus [11] in combination with

Matlab [34]. Abaqus itself provides three venues to analyze models: the Complete

Abaqus Environment (CAE), the input file and the Python computing language [44]13.

Each model considered in this research was initially created using CAE, and the Python

code was then extracted and modified to accommodate for changes in geometry, meshing

characteristics, analysis type, BC, etc. Once the modified Python code was completed,

Matlab was used to adapt, run and extract results from models. This process, shown in

Figure 21, was repeated such that results could be compared.

As shown in Figure 21, the ’Main Routine’ sends the FE settings, material inputs

and geometric inputs to the subroutine through a counter that establishes the amount of

analyses performed within it. Within the subroutine, the caller function takes the inputs

13Each of the modeling venues has its advantages and disadvantages. For example, the input file provides
direct access to the FE processor without the need of creating the visual model, becoming advantageous for
simple models that are already discretized and when conditions such as force magnitudes and boundaries
change repeatedly, among others. On the other hand, CAE provides visual access to modules and a
more guided process to create, analyze and view the model’s results, but repetitive processes become time
consuming and larger in storage size. Python provides access to aspects of both, it takes the same steps
as with the CAE. But once it is created, the Python code can be modified to serve almost any purpose.
Therefore, it becomes a great tool for repetitive processes where various modeling parameters can change.
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Figure 21: Models Analyses Flow Diagram. Inputs and settings are controlled in the main

routine. Python codes establish each model, and the Matlab caller function sends those models to

Abaqus for analysis. The results are then imported with Matlab for comparison.

and the FE settings from the main routine and creates a Python code with them, which are

then sent along with the model and output extractor python codes to Abaqus for analysis.

After Abaqus is done with the analysis, the results are read back with Matlab. This

process is then repeated according to set specifications on the main routine. Finally,

results are compared, graphed and/or tabulated in Matlab. Python codes for each of the

models are included in Appendix B. Matlab routines and functions are included in

Appendix C.
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3.3 Dimensionality

The dimensionality of the icosahedron was one of the first considerations. The

history of LTAV shows designs made to carry people and cargo, ergo they where large in

size. History also shows that this type of vehicle suffered landing and maintenance

problems, among others. Trying to move away from those problems, a small structure

was considered; one that perhaps serves to carry small payloads and that was easy to

transport and deploy. Therefore, the icosahedron dimensionality for all models

considered in this thesis was chosen at that point to be 1 ft (0.3048 m) in diameter,

measured from opposite vertices passing through the center.

3.4 Finite Element Techniques and Validation

This section introduces the first set of studies conducted, as shown in Figure 20.

First, the type of elements and the analysis techniques are described. Then, the studies

related to the square and circular membranes are presented.

3.4.1 Elements.

Three types of elements are considered: (1) the beam element, B32; (2) the

membrane element, M3D3; and (3) the shell element, S3R. The beam element is used to

represent the icosahedral frame members; the membrane and shell elements are used to

represent the icosahedral skin. For all of them, the element coding is established by

Abaqus.

Beam theory allows us to approximate the behavior of a slender structural

component, such as the frame members, by reducing it dimensionally from the ‘true’

three-dimensional to a one-dimensional behavior. The main benefit of using such

approximation is that beam elements are geometrically simple with less DOF, compared
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to three-dimensional elements, which reduces the computing power needed for analysis.

Although, this approximation relies on the assumption that the deformation can be

estimated from variables that are functions of position along the beam axis only. The B32

element, specifically, is a quadratic element that is used in a three-dimensional space,

based on Timoshenko’s beam theory. A quadratic beam element is composed of three

nodes with six DOF at each node, three translational and three rotational, therefore is

capable of capturing the effects of both axial and transverse loads. The main difference

betweent Timoshenko’s and Euler-Bernoulli’s beam theories is that Timoshenko’s include

transverse shear deformation, which is the capacity of capturing in-plane deformation

caused by the beam’s bending moment. The B32 element is used for all the analyses

involving the frame. See Section 28.3 of Reference 12 for more details.

Considering the skin, two type of elements are compared: a membrane element,

M3D3, and a shell element, S3R. The analytical and FE definition of what a shell and a

membrane are is the same, with the exception that both element types can be applied to

either flat or curved surfaces. In other words, the shell element carries both membrane

and bending stiffnesses and can be used for both initially flat and curved surfaces [12, Ch.

28.6], while the membrane only carries membrane stiffness but can still be used for both

initially flat and curved surfaces [12, Ch. 28.1].

The M3D3 is a three-dimensional triangular surface element with three nodes, in

which each node has three displacement DOF. This element is commonly used to

represent thin surfaces with no bending stiffness, therefore has no rotational DOF [12,

Ch. 28.1.1]. The S3R is also a three dimensional triangular surface element, but it has all

six DOF such that it carries both membrane and bending stiffnesses, with finite
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membrane strains. A pictographic representation of the triangular element, as well as the

DOF for both shell and membrane elements, are shown in Figure 22. In regards to the

DOF numbering system: the displacement DOF are 1, 2 and 3 in the x, y, and z

directions, respectively, and rotational DOF are 4, 5 and 6 about the x, y, and z directions,

respectively. The main reason of using triangular elements over square elements is that

the formers allow for an homogeneous mesh in each icosahedral face.

Figure 22: Triangular Surface Element Representation

Additionally, the S3R is a hybrid element that uses thin shell theory and transitions

to thick shell theory as thickness increases, making it a general purpose element. The ‘R’

stands for reduced integration, which uses a lower order integration to form the element

stiffness. One of the benefits of reduced integration is the use of less integration points,

resulting in less computing time and storage space. Another benefit is the accuracy of

results. The strain and stress in reduced integration elements are calculated at Barlow

points, which provide optimal accuracy [8]. This sometimes can be comparatively

observed in large displacement analyses with transverse loading where fully integrated
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elements show overly stiff behavior associated with shear-locking, while reduced

integration elements show relaxed and improved performance [30]. The drawback of

using reduced integration is that it can introduce zero-energy deformation modes that

produce zero strain and stresses, called hourglass modes, leading to inaccurate results.

Abaqus controls hourglass modes by adding a small artificial stiffness to zero-energy

modes [13, Ch. 3.1.1]. Both elements are used in convergence studies related to the skin,

mainly to locate the transition point at which the shell element shows membrane behavior

as a result of its thinness.

3.4.2 Analysis Techniques.

Two aspects are considered when selecting the analysis technique to evaluate the

various models used in this thesis. First, large displacement analysis is inherently a

nonlinear problem. Abaqus has two techniques to solve nonlinear static problems: Riks

and Newton Raphson; the latter is used in this thesis. A one-dimensional description of

the Newton Raphson technique is presented in Section 2.4.2. The main difference

between them is that a load (in load controlled analyses) or displacement (in

displacement controlled analyses) input is required for the Newton Raphson, while the

Riks solves simultaneously for load and displacement. Unlike the Newton Raphson, the

Riks technique has the capacity to follow solution paths where snap-through and

snap-back occurs, capturing buckling and post-buckling behavior of a structure. These

types of global instabilities are well managed with Riks, but instabilities that cause local

transfer of strain energy from one part to the other within the model might cause

convergence issues. On the other hand, the Newton Raphson technique has the capacity

of adding adaptive automatic stabilization to equilibrium equations. Stabilization adds

58



viscous forces on the form Fv = cM∗ν to overcome those local instabilities, where M∗ is

an artificial mass matrix calculated with unit density, c is the damping factor and ν is the

nodal velocities vector. The ‘automatic’ feature adds volume-proportional damping and

the ‘adaptive’ feature varies the damping factor spatially and/or with time, controlled by

the convergence history and the ratio of dissipated energy to total strain energy. This

allows for a converged solution while minimizing the effect introduced by damping. The

maximum ratio of dissipated energy to total strain energy is set by default and left at

0.05 [12, Ch. 7.1.1].

The second aspect considered in the analysis selection is the membrane behavior.

Initially flat and stress free membranes have no stiffness; therefore out-of-plane loading,

such as pressure, causes numerical singularities and convergence difficulties. One option

is to pre-stress the membrane such that it can acquire stiffness. Another option is the use

of stabilization, such that for the first increment where the membrane has no stiffness, the

viscous forces eliminate the singularities and once some out-of-plane deformation has

developed, the membrane acquires stiffness, resisting out-of-plane loading. Therefore, the

static step with adaptive automatic stabilization for a maximum ratio of dissipated energy

to total strain energy of 0.05 is used for all nonlinear analyses conducted in this thesis.

Linear static and linear buckling analyses are also conducted in this thesis. The

linear static analysis is a procedure that solves for the equilibrium of a structure given the

applied loads assuming there is no stiffness changes, therefore solving for displacements

without the need of an iterative process. This procedure is only used to compare the

relative behavior of hollow beam profiles versus the solid profile when considering the

frame standalone. The linear buckling analysis is a perturbation procedure that estimates
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the eigenvalues and vectors that represent the critical (bifurcation) loads and the mode

shapes corresponding to each critical load, respectively. This procedure is used to

estimate the mode shapes of the icosahedral structure, as well as as to evaluate the effect

that hollow beam profiles have in the critical load.

3.4.3 Square Membrane.

Figure 23: Square Membrane

Model. Arrows represent the surface

pressure. Orange symbols represent

the fixed displacement boundary condi-

tions in the x,y, and z axes.

Referring back to Figure 20,

the first step of the modeling process is to validate

the proposed FE techniques in order to properly

use them in the icosahedral structure. Three

elements have been described: B32 (beam), S3R

(shell) and M3D3 (membrane), along with several

analysis techniques, including the Newton Raphson

with adaptive automatic stabilization. Additionally,

two analytical solutions for the square membrane

are presented in Section 2.5 by Equation (2.32)

to Equation (2.35). These solutions are used

to run convergence studies that not only validate

the analysis techniques, but also provide the correct

number of elements needed in order to achieve an accurate solution for the square

membrane, considering both S3R and M3D3 elements.

The square membrane model is composed on a flat surface with the displacements

DOF tied around the edges and SL pressure load applied to and parallel to the entire

surface. The model is shown in Figure 23; the symbols at the edges represent the BC and
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Table 2: Square Membrane Model Properties

Area (m2) 0.0111

Dimensions (m) ledge = 0.1054

Thickness (m) 5e-5

Load (Pa) 101,325

Boundary Conditions U1=U2=U3=0 along edges

Analysis
Static Nonlinear with Adap-

tive Automatic Stabilization

Modulus of Elasticity (GPa) 303

Poison′s ratio 0.3

Density (kg/m3) 1560

Element Type M3D3/S3R

the arrows represent the pressure load. The BC were selected in agreement with

analytical solutions; having the rotational DOF free extends from the fact that the

membrane has no bending stiffness,since it is carried through rotations. Using the SL

pressure as the magnitude extends from the fact that an LTAV under a vacuum is

subjected to no more than the pressure at SL (details are discussed in Section 2.3). The

model has the same surface area as one triangular face of the icosahedral skin.

Additionally, it was discretized by selecting the amount of elements desired per edge,

called ‘seeding’, where all edges shared the same seeding number and element size,

producing a homogeneous mesh. Model properties are listed in Table 2.

The purpose of considering both elements is to evaluate their behavior against

analytical solutions and to confirm that the bending stiffness diminishes in the shell
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element for small thicknesses, validating the use of BC with free rotations. For this study,

the membrane is assigned a thickness of 0.05 mm, thin enough to expect membrane

behavior out of the shell element. The study was conducted by varying the edge seeding

from 8 to 43 seeds, in increments of 1, resulting in 128 to 3698 elements, respectively. In

order to compare the FE solution with analytical solutions, the center displacement is

selected as the delineating factor for convergence. Results obtained from analytical

solutions demonstrate that they predict the center displacement within 10% of each other.

It was found that the FE solution agrees very well with Seide’s solution, while

Timoshenko’s solution remains within 10% of the rest. Element’s center displacement

magnitude and % error vs number (#) are shown in Figure 24, for both FE and Seides

solutions.

Note that both elements agree very well with each other for every number of

elements. Also, results show that 390 elements are enough for convergence within 1%,

using either element. There is significant oscillation in both elements as a result of the

numerical approximation, but it diminishes as the number of elements increases. Results

obtained from all solutions are tabulated in Section A.1. The Python code that produces

the square membrane is included in Section B.2.

At this point, FE techniques has been validated for a rectilinear configuration, for

both shell and membrane elements. But the question regarding the effect of thickness on

the solution is still unanswered.

3.4.4 Circular Membrane.

Two studies were conducted for the circular membrane: a convergence study and a

thickness study. As with the square membrane, the purpose of the convergence study is to
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Figure 24: Square Membrane Convergence Study Results: Center Displacement and %

Error versus # of Elements

validate the FE techniques and find the discretization that allows an accurate solution. On

the other hand, the purpose of the thickness study is to find the thickness point at which

the shell starts behaving like a membrane. In this case, that point in not particularly

important for the analysis of the icosahedron, but confirms that the point can be found

within reasonable thicknesses.

The circular membrane model features are similar to those of the square membrane

model. It is composed on a flat surface with the displacements DOF tied around the edge

and SL pressure load applied to and parallel to the entire surface. The circular membrane

model is shown in Figure 25; symbols at the edge represent the BC and arrows represent

the pressure load. This model also has the same surface area as a triangular face of the
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icosahedral skin. Additionally, it was discretized by seeding the edge with the same

element size. Model properties are shown in Table 3.

Figure 25: Circular Membrane Model. Arrows represent the surface pressure. Orange symbols

represent the fixed displacement boundary conditions in the x,y, and z axes.

The circular membrane convergence study consisted of discretizing the mesh made

of M3D3 elements, from 5 to 51 edge seeds, in increments of 1, representing 5 to 475

elements, respectively. For each analysis run, the center displacement and von Mises

stress were compared against the analytical solution, provided by Equation (2.29) and

Equation (2.30). Convergence study results are shown in Figure 26. Note that for more

that 50 elements, the error is less that 5% for both the displacement and stress.

Furthermore, results tabulated in Section A.2 show that 172 elements are sufficient to

achieve convergence within 1% for both displacement and stress. While stress increases

exponentially with the number (#) of elements, center displacement shows periodic

behavior that damps out as the number of elements increases.
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Table 3: Circular Membrane Model Properties

Area (m2) 0.0111

Dimensions (m) diameter = 0.119

Thickness (m) 1e-3

Load (Pa) 101,325

Boundary Conditions U1=U2=U3=0 along edges

Analysis
Static Nonlinear with Adap-

tive Automatic Stabilization

Modulus of Elasticity (GPa) 303

Poison′s ratio 0.3

Density (kg/m3) 1560

Element Type M3D3/S3R
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Figure 26: Circular Membrane Convergence Study Results: Center Displacement and

Stress versus # of Elements
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The thickness convergence study comparing the analytical solution against the shell

(S3R) element for thicknesses from 5.0x10−6 to 2.0x10−1 (m). The model had the same

properties listed in Table 3, but the mesh was fixed at 452 elements and different

thicknesses. One of the main characteristics of the shell element is that even at small

thickness, it carries bending, therefore a cross-sectional stress distribution is expected

(see Figure 10 in Section 2.5). Ideally, there is a thickness point at which that stress

distribution approaches a constant value across the entire thickness, as the membrane

does. Center out-of-plane displacement and stress versus thickness are shown in

Figure 27, for both the shell element and the analytical solution. Results show a fairly

constant % error in both displacement and stress for thicknesses less than 0.5 mm. But

there is a significant jump in % error for thicknesses less than 0.05 mm. Furthermore,

results after that point have a significant change in slope, suggesting that bending stiffness

became significant. The tabulated results, included in Section A.3, indicate that a

thickness less than 0.7 mm produces solutions agreement within 5%. The stress

analytical solution is compared against the shell stress at the mid-plane. The Python code

that produces the circular membrane is included in Section B.1.

At this point, the FE techniques, specifically the use of the Newton Raphson

technique and both membrane and shell elements to model the behavior of initially flat

membranes, have been validated with both square and circular models. In order to

evaluate the membrane behavior of the icosahedral skin, a triangular model is considered

next.
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Figure 27: Circular Membrane Thickness Study Results: Center Displacement and Stress

versus Thickness

3.5 Triangular Membrane

Figure 28: Triangular Membrane

Model. Arrows represent the constant

pressure applied to the surface and or-

ange symbols represent the fixed dis-

placement boundary conditions in the

x,y, and z axes.

In order to answer the first four

questions formulated on Section 3.1, a triangular

model that represents the icosahedral skin

is considered. The model consists of an equilateral

triangular surface of the same area as a triangle of

the icosahedral skin, based on a icosahedron with

a diameter of 0.3048 m (1 ft.). The model is shown

in Figure 28; symbols at the edges represent the

BC and the arrows represent the pressure load. This

model assumes that the frame remains rigid during

deformation, therefore all three edges have fixed

displacement DOF. Nonetheless, the rotational
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Table 4: Triangular Membrane Model Properties (unless otherwise stated)

Area (m2) 0.0111

Dimensions (m) ledge = 0.1602

Thickness (m) 1e-3

Load (Pa) 101,325

Boundary Conditions U1=U2=U3=0 along edges

Analysis
Static Nonlinear with Adap-

tive Automatic Stabilization

Modulus of Elasticity (GPa) 303

Poison′s ratio 0.25

Density (kg/m3) 1560

Element Type M3D3/S3R

DOF remain free due to the expected membrane behavior. As with previous models, the

SL pressure is used throughout the surface. Model properties are listed in Table 4. The

Newton Raphson with adaptive automatic stabilization technique is used for all analyses

involving the triangular model.

From the W/B point of view, having these boundary conditions limits the amount of

volume loss since the skin deflection around the edges is eliminated. From the structural

point of view, using such model can underestimate the effect that the frame has on the

skin since former, when connected to the latter, will not remain rigid. On the other hand,

using such a model provides a venue to efficiently estimate skin behavior. The Python

code that produces the triangular membrane is included in Section B.3.

First, a convergence study is conducted to find the discretization needed in order to

achieve a converged solution with the membrane element. Second, a thickness study is
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conducted to find the point at which the shell element behaves like a membrane. Finally,

a material properties study is conducted to understand changes in membrane’s behavior

due to variations in material properties. Is important to clarify that, since no analytical

solution was found for the triangular membrane, studies conducted for this thesis

compare the relative performance of the elements considered.

3.5.1 Convergence Study.

This convergence study was conducted by seeding homogeneously the edges of the

membrane (M3D3) element (shown in Figure 22), such that each edge has the same

amount of elements. This allows for a mesh composed of elements of the same size.

Seeds along the edges are shown in Figure 29, for both 5 and 10 seeds per edge. Note that

all edges have the same amount of triangles adjacent to them.

The study was conducted in increments of one, from 5 to 50 seeds per edge,

representing 25 to 2296 elements, respectively; for a total of 46 analyses. The

displacement and stress at the center were tracked for convergence by using two methods.

First, the % difference was calculated by considering the i seeding value against the i − 1

value. Second, the % difference was calculated by considering the i seeding value against

the last, iend, value. Results are shown in Figure 30. Note that while the displacement

converges very steadily, the stress has more variation and a higher % difference.

Nonetheless, results indicate that 324 elements (18 seeds per edge) are sufficient for

displacement and stress convergence within 1% and 5%, respectively, compared to the 50

seeds case. Results are tabulated in Section A.4.
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(a) 5 Seeds per Edge (b) 10 Seeds per Edge

Figure 29: Triangular Membrane Mesh Comparison
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Figure 30: Triangular Membrane Convergence Study Results: Center Displacement and

Stress versus # of Elements

3.5.2 Thickness Study.

As with the thickness study of the circular membrane, the purpose of this study is to

find the thickness point at which the shell element behaves like a membrane. Since there

is no analytical solution in this case, the membrane element is used for comparison. The
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model is discretized with 1296 elements (50 seeds), which is above the point of

convergence. Quantities considered are center displacement, von Mises stress and strain

energy. In case of the shell element, the top, middle and bottom stress are considered.

Strain energy provides a globalized measure that relates both stress and strain results of

the entire model, contrary to displacement and stress which are localized values.

The study yielded results similar to those of the thickness study conducted for the

circular membrane (see Figure 27), therefore plots are not presented in this section.

Tabulated results, included in Section A.5, indicate that a thickness tskin ≤ 0.02 mm

provides a shell and membrane agreement within 1%. Therefore, the skin thickness on

further analyses will be verified to identify if this point is being crossed.

3.5.3 Material Properties Study.

The purpose of the material properties study is to approximate the icosahedral skin

response due to material properties changes, where the skin is represented by the triangle.

The ideal W/B is set at 0.4 (see Equation (2.14)) and the skin thickness results from the

given density and set W/B (see Equation (2.15)). This study was performed with 400

elements, for both M3D3 and S3R elements, but since they provided almost identical

results, only M3D3 results are presented. To analyze changes, a three-dimensional input

space was created with the following parameters:

412 ≤ ρ ≤ 3000 kg/m3

100 ≤ E ≤ 1000 GPa

0.1 ≤ ν ≤ 0.4

where:

ρ = density; E = modulus of elasticity; ν = Poison’s ratio
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Vectors of length 25 were created for ρ and E, where initial and final values of each

vector is given by the limits provided. On the other hand, ν was changed by 0.1

increments within the provided limits. A total of 2500 analyses were done based on the

three dimensional design space created by their combinations. The density range was

selected such that the maximum skin thickness did not exceed 0.2 mm (the maximum

value at which the shell element behaves as a membrane element). Given each input

variable combination, the following quantities were considered: center out-of-plane

displacement, strain energy and skin W/B after deformation. Center displacement,

important to quantify maximum displacement, provides a local or node dependent result.

On the hand, strain energy provides a globalized measure that relates both stress and

strain results of the entire model.

Figure 31: Triangular Membrane

Geometry. O represents the center and

h represents the height.

The skin W/B after deformation was

calculated by including an estimation of the volume

lost due to triangle’s deflection. To estimate

the volume loss, the deflected surface is integrated

numerically using Matlab functions’ ‘quad2d’ [48]

with ‘gridddata’; the latter fits the triangular surface

given by the deflected nodes. The integration

limits are given by Equation (3.1), as a result

of the established geometry shown in Figure 31.
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Displacement and strain energy curves are shown in Figure 32 for constant values of

modulus of elasticity and Poison’s ratio. Ideally, less displacement and strain energy is

better. Changes in modulus of elasticity cause significant response in the triangle

(Figure 32a). Furthermore, changes can be as high as 73% between the limits considered,

as shown by tabulated results in Section A.6. On the contrary, there is little variation

between Poisons ratios (Figure 32b); in fact, high Poison’s ratios lead to stiffer responses

by no more than 10%. Another consideration is the material’s density. Low material

density leads to high skin thickness, as shown by Equation (2.15). It can be shown that

the response can change up to 64% within density limits. Additionally, strain energy and

center displacement are compared against modulus of elasticity for fixed Poisson’s ratio

and density in Figure 33. Note that the response changes considerably for low moduli,

suggesting that there is a trade space. Nonetheless, the final W/B (including the volume

reduction) shows the following range: 0.41 ≤ W/Bskin ≤ 0.44 within the design space

considered, therefore not graphed here. Details are discussed in Section A.6. Note that

regardless of the material properties selected, large displacements are observed. From a

numerical point of view, this can become an issue, but the use of stabilization in the

Newton Raphson technique allowed for a smooth convergence. The analyses showed

sensitivity to the selection of the initial load increment. This was managed in Matlab by

automatically adjusting the initial load increment every time convergence issues arose

and rerunning those analyses.
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Figure 32: Triangular Membrane Material Properties Study Results: Center Displacement

and Strain Energy versus Density
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Figure 33: Triangular Membrane Material Properties Study Results: Center Displacement

and Strain Energy versus Modulus of Elasticity

At this point, the model discretization and the expected skin behavior are known,

including the effect of thickness, density, Poison’s ratio and modulus of elasticity.

Furthermore, it was found that changes in material properties have minimum effect in the

skin W/B.

3.6 Frame Standalone

The icosahedral frame standalone model provided a decision guide for the geometric

characteristics and the proper BC. Three studies were conducted: a convergence study, a

beam profile study and a BC study. Prior to conducting such studies, the geometric

definition of the icosahedral structure was established. Additionally, an important
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question was considered: how can the pressure applied to the icosahedral skin be modeled

in the frame? This question was answered with the use of the coupling constraint.

3.6.1 Geometric Definition.

Figure 34: Spherical to Cartesian

Coordinates Systems Transforma-

tion [5]

The coordinates of each of the 12 icosahedral

vertices were obtained by using the Matlab

function: icosahedron coordinates.m (provided

in Section C.2). This function was created with

a coding provided by T.T. Metlen [38, 141]. Since

each of vertices lies on an imaginary circumscribed

sphere, the location of each vertex is established

using of spherical coordinates and then transformed

into Cartesian coordinates. The spherical

coordinate system is defined as shown in Figure 34,

where θ is an angle measured from the x axis to the

vector OP, φ is an angle measured counterclockwise from the xy plane to the vector OP,

and r is the length of vector OP such that OP = OP(r, θ, φ); with transformation into the

Cartesian coordinate system: x = r sinφ cosθ, y = r cosφ sinθ and z = r sinφ. Placing the

icosahedral center at (0, 0, 0), top and bottom vertices can be taken as the north and south

poles, defined at (r,±90◦, 0), for any r value (see Figure 5). Of the 10 vertices left, five

are located at the upper hemisphere equally spaced by θ = 72◦ at a constant φ = 26.6◦,

and the other five at the lower hemisphere equally spaced by θ = 72◦ at a constant

φ = −26.6◦. Once the icosahedron radius, r, is established, the spherical coordinates are

transformed to Cartesian. See Reference 38 for more details. Note that in order to
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calculate the volume (Equation (2.5) to Equation (2.10)), a geometric approach was

taken, rather than a trigonometric one, but both yielded the same angular relationships.

3.6.2 Coupling Constraint.

The coupling constraint is a surface based constraint provided by Abaqus that

couples the motion of a surface’s collection of nodes to the motion of a surface’s

reference point [12, Ch. 33.3.2]. Once the model is discretized, the reference point

becomes a node, allowing for the surface’s mesh to couple with the reference point; the

surface’s coupled nodes are referred as ‘coupling nodes’. Abaqus offers various types of

coupling constraints, including the distributed coupling. In general, distributed coupling

constraints the rotation and translation of the reference node to the coupling nodes. It

transmits loads and BC applied to the reference node through the use of weight factors at

the coupling nodes [37]. It distributes loads such that the resulting forces (and moments)

at the coupling nodes are equivalent to forces (and moments) at the reference node. The

rotational DOF can be released from the constraint, allowing the transfer of forces, but

not of moments. The default weighting method sets all weight factors to 1, but linear,

quadratic and cubic weight factors can be implemented if desired. Additionally, this

coupling constraint is available for both geometrically linear and nonlinear analyses.

Considering the use of such constraint to model the pressure transfer from the

icosahedral skin to the frame, the equivalent pressure at each triangle can be given by:

F = PA, where A is the triangle’s area, P is the pressure, and F is the equivalent load.

Before using the constraint in the frame, a triangular model with the equivalent load

applied to a reference point located at the center is created (shown in Figure 35) and

compared to the pressure model (shown in Figure 28).
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Figure 35: Triangular Membrane

Model with Coupling Constraint. A

is the triangle’s area, P is the pressure,

and F is the equivalent load. The

coupling constraint is represented by

the blue lines.

After discretizing the model with 400 M3D3

membrane elements, displacement and von Mises

stress are compared by using nonlinear analysis

in both pressure and equivalent load models. Errors

are calculated with respect to the pressure model

by comparing the displacement nodal and stress

elemental results. For displacement, mean and

maximum errors are 0.3% and 0.5%, respectively.

For stress, mean and maximum errors are 1.5%

and 83.2%, respectively. Displacement and stress

contours are shown in Figure 36 and Figure 37,

respectively. While displacement contours

show clear similarity, stress contours deviate close

to the center, suggesting that the constraint causes a

change in the stiffness matrix. Note that while pressure is a follower force, the equivalent

force applied to the reference node will always remain perpendicular to the initial

configuration, therefore causing a change in the membrane stiffness (see Section 2.4.1 for

more details).

Regardless of the difference in stress that the coupling constraint showed in the

triangle, it provides a method to estimate the forces transferred to the frame. This

estimation relies on the assumption that all the pressure magnitude is transferred to the

frame and that the skin provides no stiffness assistance to the frame. Assuming that the

skin behaves as a membrane, just the displacement DOF are constrained, such that only
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(a) Pressure Model (b) Coupling Model

Figure 36: Triangular Membrane Coupling Constraint Validation: Out-of-Plane Displace-

ment Contours

(a) Pressure Model (b) Coupling Model

Figure 37: Triangular Membrane Coupling Constraint Validation: Out-of-Plane von Mises

Stress Contours

forces (not moments) are distributed to the frame. Using a spherical coordinate system

(refer to Figure 34), the equivalent force is applied to reference points located at the
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center of each triangle created by the 30 frame members in the radial direction (towards

the center). Each reference point is coupled via separate coupling constraints to the

respective beams. This model is used for subsequent frame studies to discretize the frame

and evaluate the effects of different boundary conditions and beam profiles.

3.6.3 Boundary Conditions Study.

One of the main features of the icosahedron is symmetry. This property provides

several structural advantages such as equal surface loading, improved stress distribution

and buckling retardation. Additionally, the actual design will have no BC once afloat.

The FEA requires for the model to have BC since otherwise the static analysis runs into

singularities. Therefore, is important to select them such that symmetry is maintained

throughout the analysis.

Three BC are considered, as shown in Figure 38. The first has the bottom vertex

fixed Figure 38a), therefore all six DOF are constrained. The second has the bottom

vertex fixed and the top vertex with the DOF 1 and 2 constrained (Figure 38b). The third

has both bottom and top vertices with only DOF 1 and 2 constrained (Figure 38c).

The frame model is discretized with 1062 B32 beam elements and an initial W/B of

0.35. Beams are hollow with a beam thickness to radius of 0.05. Using nonlinear

analysis, each of the BC are analyzed and compared. Displacement contours for all three

acBC are shown in Figure 39. In the first BC, non-symmetric behavior is clearly shown

close to the bottom vertex (Figure 39a). Behavior in the second BC improved, but

non-symmetry is still seen around the bottom vertex (Figure 39a). At this point, it can be

deducted that having the bottom vertex fixed is causing the unsymmetrical response. The

third BC is shown in Figure 39a. In this case, the icosahedron shows symmetrical
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(a) Boundary Condition 1 (b) Boundary Condition 2 (c) Boundary Condition 3

Figure 38: Frame Boundary Conditions.Yellow x′s represent reference points, and arrows

equivalent loads. Tracked points are used to establish the force versus displacement response.

response, therefore restricting the rotational DOF and the vertical displacement DOF

causes unsymmetrical response. Furthermore, the unsymmetrical BC ran into numerical

convergence problems after about ∼ 45% of the equivalent SL pressure, a common issue

when the Newton Raphson technique runs into a bifurcation point.

To visualize nonlinear behavior as pressure increases, the latter is plotted against one

of the edges’ midpoints located adjacent to the bottom vertex, where the unsymmetrical

behavior occurs. Results plotted for the three BC are shown in Figure 40. Note in

Figure 40a that just before the analysis stops, a snap-back like behavior is shown,

followed by a zero slope that drives numerical convergence issues. The snap-back like

behavior shown indicates a beam withdrawal or change in displacement direction while

still taking load. Even though the slope reverses, there is no softening, therefore the beam

does not collapse. For the BC 2, where the frame starts responding slightly more
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(a) Boundary Condition 1 (b) Boundary Condition 2

(c) Boundary Condition 3

Figure 39: Frame Boundary Conditions Comparison - Displacement Contours at ∼ 43%

of the equivalent SL pressure.
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symmetrically, a higher slope suggests that the frame increases its stiffness as it

approaches to a symmetrical configuration (Figure 40b). Nevertheless, snap-back is seen

just before approaching a zero slope. Note that in this case, the snap-back is more

pronounced, showing a slope closer to zero around that area. The snap-back can be

attributed to the fixed BC ‘pulling’ the beam back in order to achieve an equilibrium

state. Not finding the equilibrium path, the beam snaps-forward short after the stiffness

matrix becomes singular, running into convergence problems. On the other hand, the

frame’s response using the BC 3 is not only symmetrical, but also its stiffness increases

significantly and the analysis fully converges (Figure 40c). Therefore, BC 3 is selected

for further analyses.

3.6.4 Convergence Study.

This convergence study was performed with a buckling analysis, where the first five

critical pressures were used to establish convergence. The model was established using

the frame standalone with the coupling constraint and the symmetric BC discussed in

Section 3.6.3. The edges are seeded homogeneously, from 5 to 25 seeds, corresponding

to 150 to 750 seeds. Two methods were used to evaluate convergence. First, the

maximum % difference of all critical pressures is considered by comparing the i seeding

value against the i − 1 value. Second, the maximum % difference of all the critical

pressures was considered, this time by comparing the i seeding value against the last, iend,

value. Tabulated results, included in Section A.7, show that 270 elements corresponding

to a seeding of 8 per member is sufficient to achieve convergence within 0.01%.
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3.6.5 Beam Profile Study.

The last frame study is the beam profile. This study pretends to answer the last

question formulated at the beginning of this chapter, repeated here: considering the frame

performance, which is better, hollow or solid beams? At this point, the appropriate

number of elements and BC were known. Those were used in this study with a linear

static analysis to evaluate the frame’s response to the changes in the beam’s circular

profile, by adjusting the beam’s thickness to radius ratio (c). A profile comparison for c

values of 0.05, 0.5, and 0.95 is shown in Figure 41. Note that since the mass is held

constant, the radius changes inversely proportional to c. Linear analysis provides a rough

approximation of the frame’s response, but since the interest is to evaluate the response

with respect to the solid beam, it provides an efficient way to do so. Therefore, the results

considered were normalized to the solid beam, which include moment of inertia (In) ,

maximum stress (S max,n), maximum displacement (Umax,n) and critical pressure (Pcrit,n).

The study was performed by changing the beam’s thickness to radius ratio, c, as:

0.05 ≤ c ≤ 0.95.

The ‘perfect’ frame has the highest moment of inertia and critical pressure, and the

lowest displacement and stress. Each value is plotted against c in Figure 42. Note that the

best frame performance is achieved as c tends to 0. In reality, such value is unattainable

and considering that the minimum manufacturable thickness is material dependent, a

c = 0.05 is selected for the icosahedron analysis. The tabulated results of this study are

included in Section A.8.
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Figure 41: Beam Profile Comparison (not to scale)
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Figure 42: Beam Profile Study. In, S max,n, Umax,n and Pcrit,n refer to the moment of inertia,

maximum stress, maximum displacement and critical pressure, all normalized by the solid beam

results. t and r refer to beam’s thickness and radius.
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3.7 Icosahedron

At this point, several studies have been conducted in order to validate the selected

FE techniques, as well as to find the correct modeling discretization and make design

decisions. These studies provided the background needed to properly model the

icosahedral skin and frame combination; results were gathered in order to establish the

basic model. Nonetheless, there are several techniques that are particular for the

icosahedron. Models analyzed are presented following the discussion of such techniques.

3.7.1 Modeling Techniques.

Additional to the techniques verified during previous studies, three more techniques

are used for the icosahedron. First, the skin connectivity to the frame. Abaqus provides

various methods to model such connectivities, including the contact algorithm and the tie

constraint. The latter, used in the icosahedron model, ties two surfaces together during

analysis. The tie constraint allows for the selection of specific DOF to be tied, and is

capable of tying beam elements to surface elements, such as the shell and membrane

elements previously discussed. The tie is based on master and slave surfaces selected by

the user; once the DOF to be tied are selected, the constraint eliminates those from the

slave surfaces. In the icosahedron case, the frame is the master surface and skin edges are

the slave surface, which are coincident to the frame. The constraint accounts for the

thickness of the shell or membrane, but ignores the beam’s profile. Since membrane

behavior is being modeled for the skin, only the displacement DOF are tied.

Second, the complexity of the icosahedron introduced convergence issues that were

resolved by editing FE processor defaults. Referring back to the Newton Raphson

discussion presented in Section 2.4.2, the FE processor starts with an initial load
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increment, which is a percentage of the total load applied to the structure. That initial

increment can be provided by the user, or can be left as the default; nonetheless is

arbitrary. Depending on the nonlinearity of the problem, that increment might not be

appropriate to attain equilibrium, therefore an iterative process is needed in order to

adjust the increment such that equilibrium can be achieved. Abaqus has an algorithm that

controls the iterative process to aid convergence, but allows users to control most

parameters. By default, the algorithm changes the initial load increment by 25 to 75%

every time for up to five iterations. The same iterative process can occur for any load

increment, as required. If an equilibrium solution is not found by the fifth iteration, the

processor stops. Additionally, equilibrium equations are calculated several times within

each iteration as part of the Newton Rahpson process.

During the analysis of the icosahedron, three parameters related to the analysis

algorithm were changed: the amount of maximum iterations per load increment, the %

increment change per iteration, and the amount of equilibrium calculations made before

moving to another iteration. Due to the model sensitivity to the given initial increment,

the amount of maximum iterations per load increment was adjusted from 5 to 25,

allowing the processor to change the initial increment more times without stopping.

Furthermore, the increment change per iteration was changed to no less that 50%.

Additionally, the maximum number of equilibrium calculations was doubled. All these

changes made the analysis less sensitive to both initial increment and rapid changes in

slope, thus enabling a solution path.

Third, the unsymmetric matrix storage was used. Abaqus provides the option of

storing the entire tangent stiffness matrix or just its symmetric part during the analysis.
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For most static uncoupled analyses, storing the symmetric part provides an efficient mean

of analysis. But there are certain analyses that make the matrix unsymmetric, therefore

assuming that is symmetric can make the analysis run into convergence issues. One of the

cases that produces an unsymmetric matrix is the use of follower loads in large

displacement analysis [12, Ch. 32.4.2].In the icosahedron case, large displacement is

caused by applying pressure to the skin (a follower load). Therefore, storing the entire

matrix indeed aided solution convergence, even though it was not needed when

considering simple membranes.

These techniques, along with results from previous studies, were gathered to

develop a basic icosahedron model. Models with different material properties were then

developed based on the basic model.

3.7.2 Models.

The basic model is a conglomerate of previously stated techniques and design

features. The following modeling techniques and properties are shared in all icosahedral

models considered for analysis:

• Dimensionality: A fixed diameter of 0.3048 m (1 ft.) was selected, with a beam

thickness to radius ratio, c, equal to 0.05. The beam radii and skin thicknesses were

derived for a desired W/B, using Equation (2.19) and Equation (2.15), respectively.

• Load: the load was set at SL pressure (101,325 Pa).

• Boundary Conditions: the BC that produced symmetry was selected (BC 3 in

Figure 38c). The symmetric BC was composed by fixing the displacement DOF

plane: U1=U2=0, of opposite vertices.
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• Mesh: the mesh was composed of M3D3 membrane elements for the skin and B32

beam elements for the frame.

• Analysis: the Newton Raphson technique with adaptive automatic stabilization was

selected along with unsymmetric matrix storage. Also, solution controls were

adjusted to aid convergence. A linear buckling analysis was conducted in one of the

models in order to visualize buckling mode shapes.

• Constraint: the tie constraint was used to connect the skin to the frame by only

tying the displacement DOF.

A representation of the basic model is shown in Figure 43, where arrows represent

the pressure applied to the skin and orange symbols at the top and bottom vertices

represent the symmetric BC (BC3 in Section 3.6.3). Note how the skin is tied at the

mid-plane of beams, such that half of the beam cross-sections is exposed. Using the basic

model, seven models were developed by changing the material properties and desired

W/B. Material properties related to three materials were selected, as shown in Table 1: #

5, # 6 and # 10. Material #5 was selected because, though still in research, provides the

best combination of specific stiffness and strength. On the other hand, material # 6 is the

weakest of the three selected, but is a material well researched, with linear behavior and

commercially available. Material # 10 provides a middle ground between the other two in

terms of strength and stiffness. Materials and buoyancy (acW/B) of models developed are

shown in Table 5.

Note in Table 5 that the first five models have a desired W/B of 0.9, as the first three

have the material properties of selected materials for both skin and frame. Models 4 and 5
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Figure 43: Icosahedron Basic Model. Arrows represent the pressure applied to the skin and

orange symbols at top and bottom vertices represent the symmetric BC.

Table 5: Icosahedron Models

Material Desired W/B
Model Frame Skin Frame Skin rbeam t skin # Ele.

1 6 (Beryllium) 6 (Beryllium) 0.5 0.4 1.41E-03 1.05E-05 7020

2 10 (Spectra) 10 (Spectra) 0.5 0.4 1.95E-03 2.00E-05 8600

3 5 (CNT) 5 (CNT) 0.5 0.4 1.49E-03 1.18E-05 7020

4 6 (Beryllium) 5 (CNT) 0.5 0.4 1.41E-03 1.18E-05 7020

5 10 (Spectra) 5 (CNT) 0.5 0.4 1.95E-03 1.18E-05 8600

6 10 (Spectra) 10 (Spectra) 0.4 0.4 1.74E-03 2.00E-05 7020

7 5 (CNT) 5 (CNT) 0.4 0.4 1.33E-03 1.18E-05 8600

are composed of hybrid combinations of Beryllium and Spectra fiber frames with CNT

skin, respectively; thus providing stiffened versions of models 1 and 2, respectively. The
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last two models have a desired W/B of 0.8, composed of Spectra fiber and CNT material

properties, respectively.

The analysis process used to evaluate icosahedron models is slightly different from

the one discussed in Section 3.2. The detailed process is shown in Figure 44, along with

the name of the Matlab functions and Python codes used and their respective locations in

the appendices.

Figure 44: Icosahedron Analysis Process Diagram

Note that the Python codes with the model and modeling details are established prior

to the analysis process. Matlab’s caller 1 and importer 1 functions send the respective

codes to Abaqus for analysis and output extraction. The importer function 2 takes the

outputs extracted from Abaqus and imports them into Matlab as a structure. All Python

codes and Matlab functions are included in Appendix B and Appendix C, respectively.
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3.8 Summary

The purpose of this chapter is to discuss different studies that not only validated the

proposed FE techniques, but also enabled the understanding of some icosahedron features

and supported some design and modeling decisions. Convergence studies of square and

circular membranes, validated the Newton Raphson analysis technique, demonstrated the

usefulness of the stabilization mechanism in initially flat and stress free membranes, and

validated the membrane (M3D3) element. The thickness study of the circular membrane

demonstrated the capacity of the shell (S3R) element to behave as a membrane for small

thicknesses. These studies established leeway for skin equivalent triangle studies. The

material properties study was particularly important because it defined the relationship

between skin behavior and changes in material properties. Furthermore, it addressed an

important question: the effect of material properties in W/B. It demonstrated that the

most relevant material properties are modulus of elasticity and density, in that order; and

that both have minimal effect on the W/B ratio after deformation.

The frame studies identified the proper boundary condition to achieve symmetry

during modeling analysis, as well as the improved performance of the hollow beam over

the solid. Additionally, the coupling constraint and its use were established and studied.

Finally, all study results were gathered along with techniques that aided convergence, and

used for modeling the icosahedron. Seven icosahedron models were developed for

analysis by considering a combination of material properties and W/B ratios.
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IV. Results and Discussion

4.1 Overview

Modeling development techniques and their validation were discussed in Chapter 3,

along with the results of the different studies leading to the icosahedron model. In this

chapter, those modeling techniques are used to: (1) evaluate the conservation of

symmetry for the nonlinear analysis of the icosahedron, (2) evaluate the linear buckling

response of the icosahedron, and (3) compare the nonlinear response of the icosahedron

for the seven models described in Table 5. The latter includes a convergence history case

study, the buoyancy effects and the structural response of the models.

4.2 Symmetry Validation

The validation of symmetry is an important analysis tool because: (1) a symmetrical

distribution of loads and stress is achieved, improving structural response, and (2) it

allows for the use of critical design points that are independent on a specific structure’s

face or beam to represent its response, therefore reducing the amount of representative

data needed. Therefore, before considering the response of icosahedral models, the

symmetry is evaluated by comparing the coordinates of each vertex and face center

before and after deformation. Each vertex and face center is represented by a node in the

discretized model (see Figure 45a). Node displacements are characterized by the

difference between their initial and final coordinates. In the case of spherical coordinates

(see Figure 34), symmetry occurs when angles, θ and φ, remain constant before and after

deformation, allowing deformation only in the radial (r) direction. Furthermore, vertices
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would share the same radial displacement; and equally with face centers. Model 3 was

taken as an example to evaluate symmetry (see Table 5). Initial and final spherical

coordinates of each vertex are shown in Table 6, along with the % difference in both

angles. Note that the final radial coordinate is the same within four decimal places for all

vertices and angular symmetry is conserved within 0.03%. Furthermore, coordinates of

each face center are compared in Table 7. In this case, the skin deviates slightly from

symmetry, but the final radial coordinate is the same within four decimal places, too, and

angular symmetry is conserved within 0.1%.

Table 6: Vertices Symmetry in Model 3

Vertex
Initial Final

θ %D φ%D
θ (deg) φ (deg) r (m) θ (deg) φ (deg) r (m)

1 0.00 90.00 0.1524 0.000 90.000 0.1519 0.000% 0.000%

2 0.00 26.57 0.1524 0.000 26.556 0.1519 0.000% 0.033%

3 72.00 26.57 0.1524 72.001 26.556 0.1519 0.001% 0.034%

4 144.00 26.57 0.1524 144.001 26.556 0.1519 0.001% 0.034%

5 -144.00 26.57 0.1524 -144.001 26.556 0.1519 0.001% 0.034%

6 -72.00 26.57 0.1524 -72.001 26.556 0.1519 0.001% 0.034%

7 36.00 -26.57 0.1524 35.999 -26.570 0.1519 0.003% 0.019%

8 108.00 -26.57 0.1524 107.999 -26.570 0.1519 0.001% 0.020%

9 180.00 -26.57 0.1524 180.000 -26.570 0.1519 0.000% 0.020%

10 -108.00 -26.57 0.1524 -107.999 -26.570 0.1519 0.001% 0.020%

11 -36.00 -26.57 0.1524 -35.999 -26.570 0.1519 0.003% 0.019%

12 0.00 -90.00 0.1524 143.999 -90.000 0.1519 0.000% 0.000%

%D refers to the % difference of either θ or φ.
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Table 7: Face Center Symmetry in Model 3

Face Center
Initial Final

θ %D φ%D
θ (deg) φ (deg) r (m) θ (deg) φ (deg) r (m)

1 36.00 52.6 0.1211 35.997 52.617 0.1125 0.009% 0.011%

2 108.00 52.6 0.1211 108.001 52.617 0.1125 0.001% 0.011%

3 180.00 52.6 0.1211 180.000 52.616 0.1125 0.000% 0.012%

4 -108.00 52.6 0.1211 -108.001 52.617 0.1125 0.001% 0.011%

5 -36.00 52.6 0.1211 -35.997 52.617 0.1125 0.009% 0.011%

6 72.00 -52.6 0.1211 71.999 -52.630 0.1125 0.002% 0.014%

7 144.00 -52.6 0.1211 144.003 -52.630 0.1125 0.002% 0.014%

8 -144.00 -52.6 0.1211 -144.003 -52.630 0.1125 0.002% 0.014%

9 -72.00 -52.6 0.1211 -71.999 -52.630 0.1125 0.002% 0.014%

10 0.00 -52.6 0.1211 0.000 -52.629 0.1125 0.000% 0.013%

11 36.00 10.8 0.1211 35.999 10.802 0.1125 0.003% 0.092%

12 72.00 -10.8 0.1211 71.999 -10.824 0.1125 0.001% 0.107%

13 108.00 10.8 0.1211 108.001 10.803 0.1125 0.001% 0.088%

14 144.00 -10.8 0.1211 144.001 -10.823 0.1125 0.001% 0.102%

15 180.00 10.8 0.1211 180.000 10.802 0.1125 0.000% 0.094%

16 -144.00 -10.8 0.1211 -144.001 -10.823 0.1125 0.001% 0.102%

17 -108.00 10.8 0.1211 -108.001 10.803 0.1125 0.001% 0.088%

18 -72.00 -10.8 0.1211 -71.999 -10.824 0.1125 0.001% 0.107%

19 -36.00 10.8 0.1211 -35.999 10.802 0.1125 0.003% 0.092%

20 0.00 -10.8 0.1211 0.000 -10.823 0.1125 0.000% 0.100%

%D refers to the % difference of either θ or φ.
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Initial and final states of Model 3 are shown in Figure 45a and Figure 45b,

respectively. As previously mentioned, the skin is tied to the beams axes, which are

located at the center of each beam. The tie constraint accounts for the skin thickness,

even though it is not captured by the contours. Now that symmetry has been verified both

visually and numerically, the nonlinear response of all models can be compared. But first,

let’s consider the mode shapes and critical pressure predicted by the linear buckling

analysis.

(a) Initial State (b) Final State

Figure 45: Icosahedron: Model 3 States

4.3 Icosahedron Linear Buckling Analysis

A linear buckling analysis was conducted primarily to visualize the possible

buckling modes shapes. In this case, the S3R shell element was used do to its bending

terms that the membrane element lacks. Previous studies indicated that the shell element
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behaves like a membrane for skin thicknesses below 0.2 mm, but regardless of that

behavior, the shell still carries bending terms, numerically speaking. The linear buckling

analysis provided by Abaqus does not have the automatic stabilization that the static

analysis does, thus not allowing for the initially flat membrane to acquire stiffness. This

results in numerical singularities. Bending terms carried by the shell element allows the

buckling analysis to estimate mode shapes and buckling loads without running into such

singularities. The issue behind using such analysis is that membrane stiffness will not be

captured and, being membrane stiffness the primary driver of the skin behavior, modes

shapes are expected to be underestimated.

In theory, one can calculate as many buckling modes as DOF in the FE model, but

most often than not, only the first buckling mode is relevant since higher modes have no

chance of taking place before the structure collapses [27]. Nonetheless, in order to see if

the analysis predicts frame buckling, several buckling modes were considered. Buckling

modes 1, 2 and 14 are shown in Figure 48 for Model 3. Is it clear that all the predicted

modes are skin related. Note that displacement values are relative to the initial

configuration, therefore they do not represent actual displacements. As the critical load

increases, more complex mode shapes appear, as shown in Figure 46c, but the frame does

not seem to be affected by them. Furthermore, there was no frame buckling predicted

within the first 200 modes. Having so many skin related modes can be associated to the

numerical bending carried by the shell element, such that even though it is insignificant

when considering a nonlinear static analysis, it becomes the driver of such modes.

Therefore, predicted critical loads are considerably low compared to the SL pressure

(101,325 Pa).
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What is shown in Figure 48 can be interpreted as a series of in and out of plane

deflections on the skin caused by compressive forces developed through bending, where

triangle interconnections represent a series of folded plates. The latter cause opposite

deflections in adjacent planes, such that symmetry is conserved. Since the frame is

considerably stiff, compared to the skin bending stiffness provided by the shell element,

no frame buckling modes are detected. Therefore, this analysis proves not to be

representative of the icosahedral skin response.

The following section considers the nonlinear static response of the different

models, not only allowing for membrane to acquire stiffness, but establishing the effect of

the frame on the skin and the overall stiffness of the models.

4.4 Icosahedron Nonlinear Static Analysis

The structural analysis of the icosahedron not only provides insight on the structural

response, but also the means to evaluate the effects of such response in its buoyancy.

Therefore, two main aspects are considered here: structure’s response and its buoyancy.

The structural response is characterized by displacements and stresses exhibited by the

structure as incremental pressure is being applied. In a static fashion (rather than

dynamic), the Newton Raphson technique enables the capture of such response as

incremental pressure is being applied to the skin, including nonlinear effects. But internal

volume is lost as a byproduct of the structures deflection, affecting its buoyancy. The

latter is particularly important for the LTAV application. Before considering such aspects,

the case study of the Newton Raphson convergence history is presented in order to

establish the iterative process that was needed to find the solution path.
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(a) Mode 1: Pcrit = 6.98 Pa

(b) Mode 2: Pcrit = 7.26 Pa

(c) Mode 14: Pcrit = 20.5 Pa

Figure 46: Buckling Modes in Model 3
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4.4.1 Convergence History.

The convergence history of a nonlinear problem is unique and dependent on the

solution path that establishes equilibrium. As discussed in Section 2.4.2 and

Section 3.7.1, the nonlinear static analysis implemented in Abaqus uses a series of load

(also called ‘time’) increments to find the solution path. Since the solution path is

unknown, the Newton Raphson technique is used in order to find each point within the

solution path that satisfies equilibrium. Given the equilibrium at time increment t − 1, the

time increment t is selected and a number of iterations follow to try and find the next

equilibrium state, referred as equilibrium iterations. If the maximum number of

equilibrium iterations is reached before achieving the equilibrium state, the time

increment is reduced and the equilibrium iterations start again. This process is repeated

up to the point that equilibrium is found or the maximum number of attempts is reached.

The icosahedron models followed this process until the equilibrium path was found

for a SL pressure. The convergence history of model 3 (see Table 5 for the model’s

description) is shown in Figure 47 as a case study. First, the number (#) of attempts made

prior to finding equilibrium per increment is presented. It is followed by the number of

equilibrium iterations per increment (middle). Finally, the load increment for each

successful equilibrium state per increment is displayed. Note in the first increment that 19

attempts were made prior to finding equilibrium, indicating that the initially guessed time

increment was far off from the increment needed for equilibrium. Once equilibrium is

found in the first increment, the amount of attempts reduces to 15 for the second, still a

high number, resulting in even more reduction of time increment from ∼ 10−5 to ∼ 10−10.

After this point, an steady increase in time increment is clear and the number of attempts
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reduces to 1, with the exception of the next to last increment. On the other hand, the

number of equilibrium iterations, though dependent on time increments, is associated

more with the iterative technique used in the Newton Raphson to find the solution point,

though seeing a different variation (mid-plot).
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This convergence history was common within all seven icosahedron models. The

models’ sensitivity to low time increments within the first portion of the history is related

to the nonlinearity that the membrane brings as it is acquiring stiffness. This behavior

will be discussed in the structural response section (Section 4.4.3).

4.4.2 Buoyancy Effects.

Two aspects are important when considering buoyancy effects: volume reduction

and applied pressure. The volume reduction is in the denominator of the W/B equation

(see Equation (2.21)), restated below:

W
B

=
9.5745tskin r2 ρskin + 99.098

(
2c − c2

)
r2

beam r ρ f rame[
2.5362r3 − Vr

] ( Pair,o

RTair,o

) +
Pair,i

Pair,o

Tair,o

Tair,i
(2.21 revisited)

Therefore, it contributes negatively to the buoyancy. The volume reduction is given by

the initial volume minus the volume at each load increment. Once deflected, the volume

of the structure is calculated using Matlab functions: convhull.m [32] and

delaunayTriangulation.m [33]. This is done by inputing nodal displacements of each

increment into the delaunayTriangulation function, creating a triangulated surface. In

two dimensions, triangulation is the division of a surface into a set of triangles with each

side shaded with two adjacent triangles as a restriction [55]. A delaunay triangulation is

then a triangulation of a set of points such that no point in the set lies inside the

circumcircle of any of the triangles [19]. This concept is shown in Figure 48a. The

delaunay triangulation is then inputed into the convhull function, solving for the internal

volume at each increment.

Given a set of points, a convex hull is defined as the minimum convex subset that

contains that set. For example, a set of points in Figure 48b. The minimum set that
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encapsulate all points are the set of green points or the convex hull. These two concepts

can be applied three-dimensionally. In the icosahedron case, the points are the element’s

nodes, and the convex hull is indeed the icosahedron. Knowing node locations at each

increment enables the internal volume calculation as the skin deflects.

(a) Delaunay Triangulation [24] (b) Convex Hull [25]

Figure 48: Representation of the Volume Calculation Techniques

In order to calculate the volume reduction, the initial volume is subtracted from the

volume at each increment. The initial volume obtained with these functions was verified

against the analytical equation (Equation (2.12)), and both yielded the same result.

Applied pressure versus volume reduction normalized by the initial volume is shown

in Figure 49 for all seven models (model descriptions are presented here, again for

convenience, in Table 5). The horizontal dashed line represents a feasible vacuum, since a

perfect vacuum is not possible to achieve, but one -commonly referred to as an ultra high
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Table 5: Icosahedron Models

Material Desired W/B
Model Frame Skin Frame Skin rbeam t skin # Ele.

1 6 (Beryllium) 6 (Beryllium) 0.5 0.4 1.41E-03 1.05E-05 7020

2 10 (Spectra) 10 (Spectra) 0.5 0.4 1.95E-03 2.00E-05 8600

3 5 (CNT) 5 (CNT) 0.5 0.4 1.49E-03 1.18E-05 7020

4 6 (Beryllium) 5 (CNT) 0.5 0.4 1.41E-03 1.18E-05 7020

5 10 (Spectra) 5 (CNT) 0.5 0.4 1.95E-03 1.18E-05 8600

6 10 (Spectra) 10 (Spectra) 0.4 0.4 1.74E-03 2.00E-05 7020

7 5 (CNT) 5 (CNT) 0.4 0.4 1.33E-03 1.18E-05 8600

vacuum- can be obtained within 1e - 7 Pa of it [40]. Volume reductions vary no more that

4% between all models, confirming the statement made at the end of Section 3.5.3: that

material properties have minimal effect in volume reduction. Nonetheless, it can be seen

that stiffer models, models 3 and 7, only suffer ∼ 1.5% volume reduction. Also, those

stiffer models show a close to linear relationship with significantly higher slopes, an

indicator of their rigidity compared to the rest of the models. The volume reduction can

be used as a measure of collapse, and even though this is clearly not the case, using

volume reduction provides a globalized method to measure such failure. At this point, the

following question arises: what is the effect of volume reduction in structure’s buoyancy?

The effect of structural deflection on the W/B depends on two factors: volume

reduction and applied pressure. Applied pressure versus W/B are plotted in Figure 50,

with the full range of pressures at the bottom and the range pressures that provide a

W/B ≤ 1 at the top. In regards to the effect on volume reduction at the feasible vacuum

point, note that models exhibit a W/B equal to the desired W/B (0.9 for Models 1-5, 0.8
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Figure 49: Icosahedron: Applied Pressure versus Normalized Volume Reduction

for Models 6-7; see Table 5) minus the volume reduction for each model. This can also

be observed mathematically in Equation (2.21). Note that relatively linear behavior is

seen in W/B curves, as a result of the linear behavior of volume reduction. From the point

of view of applied pressure, note that all models are buoyant at the range of pressures

shown in Figure 50. This bring up an important concept: in order for a vacuum LTAV to

be buoyant, a full vacuum is not necessarily required, though desired. The effect of a

partial vacuum is reflected in the pressure ratio of the second term in Equation (2.21). As
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Figure 50: Icosahedron: Applied Pressure versus Weight-to-Buoyancy Ratio. Full analysis

(bottom). Close up of full analysis for W/B ≤ 1.

the internal vacuum is created, the internal pressure, Pair,i, is reduced, driving that term

towards 0, thus increasing the structure’s buoyancy. Note that models 1 and 7 achieve

neutral buoyancy at 95 kPa and 82 kPa, respectively, thus providing a significant pressure

range that can be used to manage the structural load, possible payload added to the

vehicle, etc.

Other buoyancy considerations include the change in atmospheric pressure and

temperature brought by changes in altitude. This is particularly important to determine

the maximum altitude that the structure is capable to achieve before losing buoyancy
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(before W/B = 1). Comparing models from a W/B point of view, models 6 and 7 have a

higher buoyancy as a result of their initially selected W/B of 0.8, instead of the 0.9 value

that was initially selected for the first five models. However, volume reduction and W/B

figures say very little about the structural behavior of the different models, a

consideration that establishes the structure stiffness and possible failure.

4.4.3 Structural Response.

Once buoyancy effects are established and symmetry is verified for all models, only

critical points on the design are considered to represent the structural response of

icosahedron models. These critical points are, displacement wise: a vertex, edge

midpoint and triangle’s center. Since both frame and skin share nodes along edges, a

vertex and a midpoint represent the behavior of both parts along the edges. First,the

applied pressure versus vertex displacement is plotted in Figure 51 and considered for all

seven models. The displacement is normalized by the beam diameter of each model. The

dashed horizontal line is the feasible vacuum line. The horizontal colored lines represent

the points at which each model achieves neutral buoyancy (W/B = 1). Note, for example,

that models 6 and 7 achieve neutral buoyancy before the first five models. That is because

the desired W/B of these models were 0.8, instead of 0.9; and as seen in Figure 50, the

W/B does not change considerably. Regardless, color lines represent the ‘true’ W/B

(including the volume reduction). Note that a closely linear relationship is observed for

the vertices of all seven models, with deflections in the order of 0.15 to 0.7 times their

respective beam diameters. As expected, these displacements are not as pronounced in

stiffer models (3 and 7). The slope difference between models 1 and 3 is as much as

114%, a definite proof of how much the material stiffness contributes to the overall
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Figure 51: Icosahedron: Applied Pressure versus Vertex Displacement Normalized by the

Beam’s Diameter

behavior of the structure. Regardless, all vertex displacements show to be less that their

diameter, which are not so small to consider them within the linear theory regime, but

small enough to validate frame’s rigidity.

In a similar fashion, the applied pressure is graphed against an edge midpoint in

Figure 52 for all seven models (see Table 5 for model descriptions). Displacements are

also normalized by the beam diameter of each model. As expected, larger displacements
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Figure 52: Icosahedron: Applied Pressure versus Edge Midpoint Displacement Normal-

ized by the Beam’s Diameter

are shown at the center of the beam, in the order of 1 to 3.3 times the beam’s diameter.

Note the nonlinear behavior for pressures less than 20 kPa (southwest corner of the

graph); it indicates that the beam is acquiring stiffness, thus causing a change in slope.

However, the change in slope between Models 1 and 3 is 77%, lower than the

change in slope when considering the vertex. The reduction in slope is an indicator of the

model’s capacity to sustain more load, as the bifurcation point occurs when the slope
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goes to 0. These changes are visible in the upper side of models 2 and 7’s curves, which

both share the material properties of the Spectra Fiber. The Spectra fiber models are of

the thickest ones since they have the lowest density, as a result of the set W/B. However,

the Spectra fiber has the lowest modulus of elasticity of the three materials considered for

evaluation. These results suggest that a stronger correlation to the modulus of elasticity

exist than the one predicted by the specific stiffness index (proposed in Section 2.7).
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Figure 53: Icosahedron: Applied Pressure versus Normalized Skin Center Displacement
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The third critical point is a triangular face center. The face center deflection,

normalized by skin thickness as applied pressure increases, is shown in Figure 53 for all

models. Note the nonlinearity in the entirety of the curves. The skin initially displaces

considerably in the lower left corner, up to 200 times the skin thicknesses. This behavior

is consistent with a membrane. Since there is no bending stiffness, the skin is required to

deflect in order to acquire membrane stiffness. Note that the slope starts increasing

significantly in all models after 200 times the thicknesses, a clear sign of a continuous

increment in membrane forces.Hardening occurs as a result. Note the difference in slopes

between model1, the less stiff model, and model 2. It is clear that specific stiffness does

plays an important role in the overall stiffness of the structure, a desired result that

minimizes buoyancy loss. When comparing models 2 and 3, a stiffer response would be

expected in Model 3 since it is materially stiffer. But the density of model 2 is about 40%

less, thus the skin thickness increases considerably for a desired W/B, ergo producing

significant geometric stiffness that result in similar responses. These large deflections

bring a numerical concern, the possibility of element distortion, which usually results in

loss of accuracy. Therefore, the mesh was verified and no distortion was found; and the

latter is believed to be a result of the mesh uniformity along the whole icosahedral

structure.

This membrane stiffing behavior is of particular importance. In fact, the structural

integrity of the icosahedron lies in this stiffing effect as much as in the stiffness that

comes from the frame. Therefore, both frame and skin are dependent on each other to

produce the overall stiffness. This phenomenon results from the selection of materials. If

a considerably lower density is used in the skin, driving its thickness up, it would acquire

112



significant bending stiffness, changing the structural behavior and diminishing the

frame’s purpose to a point where the bending stiffness is so significant that the frame is

no longer required. The issue here is finding that type of material.

At this point is known that large displacements occur in all parts of the icosahedron,

the highest being the skin center. It is also known that those displacements have minimal

effect on the W/B. Therefore all models appear to be feasible at this point. But, material

failure as a result of stresses generated by those large displacements needs to be

considered.

The critical points for maximum stress differ from those of displacement. In case of

the frame, the maximum stress occurs at about 5% the beam’s length measured from any

vertex towards the beam’s midpoint. Applied pressure versus maximum von Mises stress

on the frame is plotted in Figure 54 for all models. Material failure lines, given by

vertical dashed lines, represent, from left to right, the ultimate strength of material 6

(Beryllium), the ultimate strength of material 10 (Spectra fiber) and the yield strength of

material 5 (CNT)14. Note that the stress behavior is very similar to the displacement

behavior of the frame (see Figure 51). Failure lines demonstrate that models 1, 2, 4 and 6

fail before achieving buoyancy. Model 5 does not fail, but it gets very close to failure

once the feasible vacuum line is reached, leaving no space for a safety factor. The stress

distribution of five adjacent beams is shown in Figure 55 at maximum stress points in the

direction along the beams. Beams show compression at interior and tension at the

exterior, with an axial component, indicating that both axial and bending stress are

present. Moving towards beams midpoints (towards the edges of the figure), the stress

14The yielding point of Carbon Nanotubes (CNT) is an approximation established by selecting the lowest
value of the strength range given by the manufacturer. See Table 1 for more details.
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Figure 54: Icosahedron: Applied Pressure versus Frame Maximum von Mises Stress

dissipates by almost a magnitude. Therefore, the design of the joints becomes of

importance in order to distribute stress uniformly and reduce maximum stress.

In the case of the skin, the stress critical points are at vertices or joints. Since

vertices are modeled as points, stress concentrates around that area and creates a

singularity. Those singularity points are shown in Figure 56. Note that the rest of the

contour has considerably less stress and a uniform distribution. Therefore, two scenarios

were considered in order to evaluate skin failure: with and without singularities. In order
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Figure 55: Icosahedron: Cross-sectional Stress Distribution of Five Adjacent Beams along

their Axis

to eliminate the singularities, elements surrounding each vertex were eliminated for

maximum stress calculation purposes. Applied pressure versus skin maximum stress with

and without singularities are shown in Figure 57 and Figure 58, respectively. Contrary to

skin displacement curves (Figure 53) where model 7 shows significantly less

displacement, skin stress curves in Figure 57 show model 7 as the one with largest stress.

This comes as a result of the selected W/B of 0.8 that drove the frame to small

dimensions, ultimately causing greater stress on the skin. On the other hand, both models

with the properties of Spectra Fiber (Table 1) -Models 2 and 6-, showed a third of the

model 7 stress. This is a result of the increment in skin thickness.
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Figure 56: Icosahedron: von Mises Stress Contour of Model 3
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Figure 57: Icosahedron: Applied Pressure versus Skin Maximum von Mises Stress (with

singularities)
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But, without singularities (Figure 58), skin stress reduces considerably in all models.

This is an indicator of the effect of singularities. Note that once singularities are not

accounted for, only model 1 fails skin wise before achieving buoyancy. This bring an

important modeling point: the connectivity of beams with surface elements can produce

stress concentrations in the model that should not be in the real structure since it will

most likely connect on a surface, not a point.
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Figure 58: Icosahedron: Applied Pressure versus Skin Maximum von Mises Stress

(without singularities)
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Overall, the skin stress behaves fairly linear once applied pressure is more than

10 kPa, but note that stiffer models show significant slope increment, as previously seen

in pressure versus displacement curves.

4.5 Summary

Before evaluating the structural response of the icosahedron, a symmetry validation

was performed to ensure that the symmetric BC found in the frame’s study (see

Section 3.6.3) maintained symmetry throughout the analysis of the icosahedron. Results

concluded that symmetry is indeed conserved and that the applied BC have virtually no

effect in the structural response, as desired. Following this study, the results regarding a

linear buckling analysis and nonlinear static analyses were presented.

The linear buckling analysis performed in model 3 estimated the buckling modes of

the icosahedron, suggesting that the skin will buckle at pressure values as low as 7 Pa,

while the frame remains rigid within the first 200 buckling modes. This was dimmed

incorrect since: (1) the icosahedron displays nonlinear behavior (not captured by this

analysis), (2) the use of a shell element was required since the membrane initially has no

stiffness and the linear analysis is incapable of capturing such stiffness, resulting in

compressive modes related to the small bending stiffness left in shell elements,

undermining the skin response and the structure’s buckling, and (3) the nonlinear analysis

confirms the lack of buckling before the SL pressure is reached.

The nonlinear static analysis provided great insight on the structural response of the

icosahedron. First, the volume reduction resulting from the skin deflection proved to be

minimal, causing minimal effect on the W/B of the different models with the largest

reduction being 0.04; consistent with what was found in the single triangle study (see
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Section 3.5.3). Second, large displacements were found in all the parts of the icosahedron

model, the least occurring at vertices, followed by edge midpoints, and the largest

occurring at face centers. Regardless, all models remained stable during the entire

analysis, with significant harding occurring in the skin that helped increase overall

model’s stiffness. Third, the stress proved to be the cause of failure for most models, just

leaving models 3 and 7, both made entirely of CNT. Frame failure locations were at about

5% the beam’s length from any vertex to any beam, with significantly higher values than

the rest of the frame. This suggest that stiffening those areas not only will prevent failure,

but it would make model 2 feasible. Results for models 3 and 7 are summarized in

Table 8, including maximum displacements and stresses for both frame and skin, the W/B

and the maximum altitude. The maximum altitude is predicated on the fact that an ultra

high vacuum is used. The safety factors are calculated using the estimated yielding point.
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Table 8: Feasible Models

Model: 3 7

rbeam (mm) 1.49 1.33

tskin (mm) 0.0118 0.0118

W/B 0.91 0.81

Maximum Altitude - with Ultra High Vacuum (m : ft) 512 : 1680 676 : 2219

Material Properties

Density (kg/m3) 1650 1650

Poison’s ratio 0.2 0.2

Modulus of Elasticity (GPa) 1000 1000

Frame

Maximum Displacement (mm) 3.05 3.97

Maximum von Mises Stress (Pa) 6.79E+09 8.64E+09

Safety Factor 1.47 1.16

Skin

Maximum Displacement (mm) 8.64 9.53

Maximum von Mises Stress (Pa) 9.62E+09 1.33E+10

Safety Factor (w.r.t the yielding point) 1.04 0.75

Maximum von Mises Stress - No Singularities (Pa) 5.15E+09 5.83E+09

Safety Factor - No Singularities (w.r.t the yielding point) 1.94 1.72
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V. Conclusions and Recommendations

5.1 Chapter Overview

The research conducted in this thesis revolves around one question: what is the

behavior of an LTA icosahedral structure subjected to a vacuum? Two tools were mainly

used in order to answer such question: the Archimedes principle and FEA. Archimedes

provides the principle of buoyancy, which puts the structure in the LTA realm. FEA

provides the means of evaluating the response of such structure subjected to a vacuum.

The complexity of the icosahedron in combination with (1) the numerical nature of the

FEA and (2) the buoyancy principle led to multiple questions. These questions ultimately

served to validate the techniques used to model its response and justify the use of the

selected design features. The responses of these questions along with the understanding

of the icosahedral structure are presented as conclusions in the next section. Following

the conclusions, a research impact statement is provided and, recommendations are stated

in order to provide a stepping stone for future research.

5.2 Conclusions of Research

The conclusions presented are divided into three categories: design, concepts and

modeling techniques.

1. Design

(a) The selection of an appropriate cross-section for the frame members greatly

influences the stiffness and failure modes of the entire structure. The study

showed that for beams of circular cross-section, the performance improves in
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an exponential fashion as the thickness of the beams tend to 0. Therefore,

manufacturability and material selection needs to be considered in order attain

an improved performance.

(b) The material selection becomes the critical design factor for LTAV subjected

to a vacuum. Preliminary studies show that the response is highly dependent

on the specific stiffness, ergo the modulus of elasticity and density become the

driving constraints with minimal stiffness effects from changes in the Poison’s

ratio. The response of the icosahedron shows material failure modes in some

models, indicating the need of high specific strength in order to sustain the

high stress levels that result from thin components.

(c) The membrane forces in the icosahedral skin provide significant stiffness to

the overall structure. The skin shows significant hardening as a by product of

the large deflections.

(d) The frame provides structural stability, allowing for the structure to sustain

large deflections without collapsing.

2. Concepts

(a) Large displacements cause minimal changes in the W/B of the structure. The

response of the different icosahedral models show skin displacements from

600 to 1500 times its thicknesses with only 2 to 4% in volume reduction. The

magnitude of the volume reduction is a consequence of the fairly rigid frame,

with maximum displacements in the order of 1 to 3.3 its diameter. Therefore,

the W/B ratio was not affected by more than 0.04.

122



(b) Although a perfect vacuum is desired, a high partial vacuum can be used to

achieve buoyancy. The vacuum level needed in order to achieve buoyancy

depends on the design W/B, selected by assuming a full vacuum is achieved.

(c) An icosahedral LTAV has the potential of being constructed provided a high

specific strength material is available. Results showed that the specific

strength is the driving constraint and the cause of failure. Though the specific

stiffness is important, it was shown that large displacements are tolerable with

minimal effects on the structure’s buoyancy. Furthermore, it was shown that a

material with a strength of 30 GPa would allow a vehicle with a W/B of 0.82.

Furthermore, if the frame beams are stiffened from the vertex up to 5% the

beam’s length, the strength requirement reduces considerably.

3. Modeling Techniques

(a) The Newton Raphson technique with adaptive automatic stabilization is an

efficient analysis tool capable of performing nonlinear analyzes of initially flat

membranes and frames, without the artificial damping added to stabilize the

model affecting the solution’s accuracy.

(b) The static analysis of the icosahedron model showed sensitivity to the

provided initial load increment. Analyses of the icosahedral models showed

convergence difficulties at the first load increment; which lead to the

modification of the solution controls in Abaqus in order to achieve

convergence.
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(c) The shell element behaves as a membrane for thin enough surfaces.

Preliminary studies showed that for a skin thickness ≤ 0.02 mm, the bending

stiffness of the shell element becomes insignificant, ergo displaying

membrane behavior. Nonetheless, the shell element underestimates the linear

buckling characteristics of the icosahedron as a result of not accounting for

the membrane stiffness.

(d) In order to preserve the symmetric characteristics of the icosahedron, proper

BC need to be selected. Studies showed that fixing the displacement DOF on

parallel planes of opposite vertices provides modeling symmetry through the

analysis.

(e) The use of surface elements tied to beam elements produced modeling

singularities that would not show in the real design. The skin showed

significantly higher stress at the frame/skin vertices connection, creating

singularity points. In the real design, the frame and skin would meet at a

surface rather than a point within the vertices, eliminating those singularity

points.

5.3 Research Impact

This research has two areas of impact: the nonlinear structural analysis of an

icosahedron and its applicability to lighter-than-air vehicles (LTAV) subjected to a

vacuum. Typical literature offers a great amount of background on the structural behavior

of simple geometries, but they tend to lack the background on complex structures,

particularly the icosahedron. The structural response of a complex geometry such as the

icosahedron is a unique problem that relies on nonlinear theories and numerical methods
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in order to understand the behavior of such a structure. Additionally, its applicability to

LTAV not only provides a ground of measure, but it establishes the capacity of such

structure to achieve buoyancy. Therefore, the largest contribution of this research is the

background on the nonlinear response of the icosahedral structure and its vacuum LTAV’s

potential.

5.4 Recommendations for Future Research

The following recommendations extend from the lessons learned during the research

process and the limitations that the modeling techniques presented:

1. The icosahedral skin and frame were modeled using beam and surface elements,

respectively, providing an efficient analysis technique. As a result, the skin showed

significant stress concentrations at the icosahedral vertices where the beam and

membrane elements connect at a point rather than a surface, creating a singularity.

A three dimensional analysis would provide insight on the effect of these

singularities and the appropriate design of the vertices.

2. The Newton Raphson with adaptive automatic stabilization showed to be an

accurate analysis technique that captures the nonlinearities of membrane and

beams. On the other hand, this technique does not have the capacity of modeling

the post buckling response. A dynamic explicit analysis is recommended in order

to capture the post-buckling response of the icosahedral structure and the dynamic

behavior that comes about the structure being vacated to produce buoyancy. The

use of imperfections in the buckling analysis, such as localized design deviations,
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is recommended in order to capture the structure’s vulnerability to the different

imperfections introduced during the manufacturing process.

3. A study of the effects that other beam cross-sections have in the overall stiffness

and instability of the icosahedron is recommended, in order to minimize the weight

and maximize the stiffness and strength of the frame.

4. The analysis conducted in this research presumed that the material behaved

linearly, an assumption that serves well as a first approximation, when the material

properties required for proper structural response are not known. The need of

materials with high specific stiffness and strength drives the material selection to

composite type materials, materials that more often than not, respond nonlinearly.

Therefore, the inclusion of nonlinear effects along with the geometric nonlinearities

is recommended.

5. The research presented here used an icosahedral structure of fixed diameter,

neglecting possible effects brought by changes in size. Therefore, it is

recommended to evaluate the possible effects on the structural response that

changes in dimensionality can bring.

6. Other considerations that need to be taken into account include: skin diffusivity,

aerodynamic effects, propulsion and manufacturability.
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Appendix A: Modeling Studies Tabulated Results

A.1 Square Membrane Convergence Study Results

The following table shows the results from the square membrane convergence study.

The model properties are: modulus of elasticity (303 GPa), Poison’s ratio (0.3),

membrane thickness (0.05 mm). The Newton Raphson with adaptive automatic

stabilization technique is used for the FEA. Edge Seed refers to the amount of elements

along each edge and # Elements is the resulting number of elements. S3R, M3D3,

Timoshenko and Seide refers to the out of plane center displacement of the shell element,

membrane element, Timoshenko’s solution (see Equation (2.32) and Equation (2.33)) and

Seide’s solution (see Equation (2.35)), respectively.

Table 9: Square Membrane Convergence Study Results

U3 (outof planecenterdisplacement) (m) % Error

Edge

Seed

# Ele-

ments
S3R M3D3 Timoshenko Seide

S3R versus

Timoshenko

M3D3

versus

Timoshenko

S3R vs

Seide

M3D3

versus

Seide

8 128 -2.666E-03 -2.674E-03 -2.991E-03 -2.690E-03 10.89% 10.59% 0.91% 0.58%

9 162 -2.621E-03 -2.626E-03 -2.991E-03 -2.690E-03 12.37% 12.19% 2.55% 2.36%

10 200 -2.671E-03 -2.681E-03 -2.991E-03 -2.690E-03 10.69% 10.38% 0.69% 0.34%

11 242 -2.646E-03 -2.648E-03 -2.991E-03 -2.690E-03 11.53% 11.47% 1.63% 1.56%

12 288 -2.683E-03 -2.685E-03 -2.991E-03 -2.690E-03 10.29% 10.25% 0.24% 0.20%

13 338 -2.661E-03 -2.661E-03 -2.991E-03 -2.690E-03 11.03% 11.05% 1.06% 1.09%

14 392 -2.685E-03 -2.687E-03 -2.991E-03 -2.690E-03 10.23% 10.17% 0.18% 0.12%

15 450 -2.669E-03 -2.669E-03 -2.991E-03 -2.690E-03 10.77% 10.78% 0.77% 0.79%

16 512 -2.688E-03 -2.688E-03 -2.991E-03 -2.690E-03 10.12% 10.12% 0.06% 0.06%

17 578 -2.675E-03 -2.674E-03 -2.991E-03 -2.690E-03 10.59% 10.60% 0.57% 0.59%

18 648 -2.689E-03 -2.690E-03 -2.991E-03 -2.690E-03 10.10% 10.08% 0.03% 0.01%

19 722 -2.678E-03 -2.678E-03 -2.991E-03 -2.690E-03 10.46% 10.46% 0.44% 0.44%

20 800 -2.690E-03 -2.690E-03 -2.991E-03 -2.690E-03 10.06% 10.05% 0.02% 0.02%

21 882 -2.681E-03 -2.681E-03 -2.991E-03 -2.690E-03 10.37% 10.37% 0.33% 0.33%

Continued on next page
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Table 9 – continued from previous page

U3 (vertical displacement) (m) % Error

Edge

Seed

# Ele-

ments
S3R M3D3 Timoshenko Seide

S3R versus

Timoshenko

M3D3

versus

Timoshenko

S3R vs

Seide

M3D3

versus

Seide

22 968 -2.691E-03 -2.691E-03 -2.991E-03 -2.690E-03 10.03% 10.03% 0.04% 0.04%

23 1058 -2.683E-03 -2.683E-03 -2.991E-03 -2.690E-03 10.30% 10.30% 0.25% 0.25%

24 1152 -2.692E-03 -2.692E-03 -2.991E-03 -2.690E-03 10.02% 10.02% 0.06% 0.06%

25 1250 -2.685E-03 -2.685E-03 -2.991E-03 -2.690E-03 10.24% 10.24% 0.19% 0.19%

26 1352 -2.692E-03 -2.692E-03 -2.991E-03 -2.690E-03 10.01% 10.01% 0.07% 0.07%

27 1458 -2.686E-03 -2.686E-03 -2.991E-03 -2.690E-03 10.20% 10.20% 0.14% 0.14%

28 1568 -2.692E-03 -2.692E-03 -2.991E-03 -2.690E-03 10.00% 10.00% 0.08% 0.08%

29 1682 -2.687E-03 -2.687E-03 -2.991E-03 -2.690E-03 10.16% 10.16% 0.10% 0.11%

30 1800 -2.692E-03 -2.692E-03 -2.991E-03 -2.690E-03 9.99% 9.99% 0.09% 0.09%

31 1922 -2.688E-03 -2.688E-03 -2.991E-03 -2.690E-03 10.14% 10.14% 0.07% 0.07%

32 2048 -2.693E-03 -2.693E-03 -2.991E-03 -2.690E-03 9.98% 9.98% 0.10% 0.10%

33 2178 -2.689E-03 -2.689E-03 -2.991E-03 -2.690E-03 10.11% 10.11% 0.05% 0.05%

34 2312 -2.693E-03 -2.693E-03 -2.991E-03 -2.690E-03 9.98% 9.98% 0.10% 0.10%

35 2450 -2.689E-03 -2.689E-03 -2.991E-03 -2.690E-03 10.09% 10.09% 0.03% 0.03%

36 2592 -2.693E-03 -2.693E-03 -2.991E-03 -2.690E-03 9.97% 9.97% 0.11% 0.11%

37 2738 -2.690E-03 -2.690E-03 -2.991E-03 -2.690E-03 10.08% 10.08% 0.01% 0.01%

38 2888 -2.693E-03 -2.693E-03 -2.991E-03 -2.690E-03 9.97% 9.97% 0.11% 0.11%

39 3042 -2.690E-03 -2.690E-03 -2.991E-03 -2.690E-03 10.06% 10.06% 0.01% 0.01%

40 3200 -2.693E-03 -2.693E-03 -2.991E-03 -2.690E-03 9.97% 9.97% 0.12% 0.11%

41 3362 -2.691E-03 -2.691E-03 -2.991E-03 -2.690E-03 10.05% 10.05% 0.02% 0.02%

42 3528 -2.693E-03 -2.693E-03 -2.991E-03 -2.690E-03 9.96% 9.97% 0.12% 0.12%

43 3698 -2.691E-03 -2.691E-03 -2.991E-03 -2.690E-03 10.04% 10.04% 0.03% 0.03%
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A.2 Circular Membrane Convergence Study Results

The following table shows the results from the circular membrane convergence

study. The model properties are: modulus of elasticity (303 GPa), Poison’s ratio (0.25),

membrane thickness (1 mm) and M3D3 membrane elements. The Newton Raphson with

adaptive automatic stabilization technique is used for the FEA. Edge Seed refers to the

amount of elements at the edge. U3 FEA and U3 Analytical refers to the FEA and analytical

(see Equation (2.29)) out of plane center displacements, respectively. SFEA and SAnalytical

refers to the FEA von Mises and analytical (see Equation (2.30)) stress, respectively.

Table 10: Circular Membrane Convergence Study Results

Edge
Seed

# Elements U3 FEA (m) U3 Analytical (m) U3 % Error SFEA (Pa) SAnalytical (Pa) S % Error

5 5 -1.0392E-03 -1.0671E-03 2.6% 6.79E+07 9.41E+07 27.9%

6 6 -1.1379E-03 -1.0671E-03 6.6% 7.10E+07 9.41E+07 24.5%

7 7 -1.1996E-03 -1.0671E-03 12.4% 7.29E+07 9.41E+07 22.5%

8 12 -9.5939E-04 -1.0671E-03 10.1% 7.78E+07 9.41E+07 17.3%

9 13 -9.5252E-04 -1.0671E-03 10.7% 7.90E+07 9.41E+07 16.0%

10 16 -9.6707E-04 -1.0671E-03 9.4% 7.87E+07 9.41E+07 16.4%

11 19 -9.7388E-04 -1.0671E-03 8.7% 7.99E+07 9.41E+07 15.1%

12 24 -1.0986E-03 -1.0671E-03 3.0% 8.31E+07 9.41E+07 11.7%

13 27 -1.0917E-03 -1.0671E-03 2.3% 8.34E+07 9.41E+07 11.4%

14 32 -1.0586E-03 -1.0671E-03 0.8% 8.67E+07 9.41E+07 7.9%

15 37 -1.0278E-03 -1.0671E-03 3.7% 8.88E+07 9.41E+07 5.6%

16 42 -1.0468E-03 -1.0671E-03 1.9% 8.92E+07 9.41E+07 5.2%

17 45 -1.0600E-03 -1.0671E-03 0.7% 8.97E+07 9.41E+07 4.6%

18 50 -1.0714E-03 -1.0671E-03 0.4% 8.94E+07 9.41E+07 5.0%

19 71 -1.0496E-03 -1.0671E-03 1.6% 9.11E+07 9.41E+07 3.2%

20 74 -1.0509E-03 -1.0671E-03 1.5% 9.11E+07 9.41E+07 3.2%

21 79 -1.0503E-03 -1.0671E-03 1.6% 9.16E+07 9.41E+07 2.6%

22 88 -1.0592E-03 -1.0671E-03 0.7% 9.17E+07 9.41E+07 2.6%

23 99 -1.0605E-03 -1.0671E-03 0.6% 9.17E+07 9.41E+07 2.6%

24 108 -1.0781E-03 -1.0671E-03 1.0% 9.18E+07 9.41E+07 2.5%

25 117 -1.0594E-03 -1.0671E-03 0.7% 9.29E+07 9.41E+07 1.3%

26 126 -1.0576E-03 -1.0671E-03 0.9% 9.27E+07 9.41E+07 1.5%

27 133 -1.0579E-03 -1.0671E-03 0.9% 9.27E+07 9.41E+07 1.5%

Continued on next page
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Table 10 – continued from previous page

Edge
Seed

# Elements U3 FEA (m) U3 Analytical (m) U3 % Error SFEA (Pa) SAnalytical (Pa) S % Error

28 142 -1.0709E-03 -1.0671E-03 0.4% 9.30E+07 9.41E+07 1.2%

29 151 -1.0678E-03 -1.0671E-03 0.1% 9.27E+07 9.41E+07 1.5%

30 172 -1.0645E-03 -1.0671E-03 0.2% 9.36E+07 9.41E+07 0.6%

31 177 -1.0640E-03 -1.0671E-03 0.3% 9.34E+07 9.41E+07 0.7%

32 186 -1.0668E-03 -1.0671E-03 0.0% 9.35E+07 9.41E+07 0.6%

33 199 -1.0652E-03 -1.0671E-03 0.2% 9.34E+07 9.41E+07 0.8%

34 216 -1.0749E-03 -1.0671E-03 0.7% 9.33E+07 9.41E+07 0.8%

35 223 -1.0658E-03 -1.0671E-03 0.1% 9.38E+07 9.41E+07 0.4%

36 242 -1.0661E-03 -1.0671E-03 0.1% 9.38E+07 9.41E+07 0.3%

37 249 -1.0679E-03 -1.0671E-03 0.1% 9.38E+07 9.41E+07 0.3%

38 272 -1.0675E-03 -1.0671E-03 0.0% 9.37E+07 9.41E+07 0.4%

39 285 -1.0715E-03 -1.0671E-03 0.4% 9.36E+07 9.41E+07 0.5%

40 298 -1.0681E-03 -1.0671E-03 0.1% 9.40E+07 9.41E+07 0.1%

41 305 -1.0681E-03 -1.0671E-03 0.1% 9.40E+07 9.41E+07 0.1%

42 330 -1.0673E-03 -1.0671E-03 0.0% 9.40E+07 9.41E+07 0.1%

43 335 -1.0693E-03 -1.0671E-03 0.2% 9.40E+07 9.41E+07 0.1%

44 348 -1.0713E-03 -1.0671E-03 0.4% 9.40E+07 9.41E+07 0.1%

45 363 -1.0685E-03 -1.0671E-03 0.1% 9.41E+07 9.41E+07 0.0%

46 382 -1.0705E-03 -1.0671E-03 0.3% 9.41E+07 9.41E+07 0.0%

47 399 -1.0693E-03 -1.0671E-03 0.2% 9.41E+07 9.41E+07 0.0%

48 414 -1.0699E-03 -1.0671E-03 0.3% 9.42E+07 9.41E+07 0.1%

49 445 -1.0723E-03 -1.0671E-03 0.5% 9.41E+07 9.41E+07 0.0%

50 452 -1.0706E-03 -1.0671E-03 0.3% 9.42E+07 9.41E+07 0.1%

51 475 -1.0736E-03 -1.0671E-03 0.6% 9.40E+07 9.41E+07 0.1%

130



A.3 Circular Membrane Thickness Study Results

The following table shows the results from the circular membrane thickness study,

comparing the FE solution with the analytical solution (see Equation (2.29) and

Equation (2.30)). The model properties are: modulus of elasticity (303 GPa), Poison’s

ratio (0.25) and 452 S3R shell elements. The Newton Raphson with adaptive automatic

stabilization technique is used for the FEA. t refers to the membrane thickness. U3 and S

refer to the center out-of-plane displacement and stress, respectively. In case of the FE

results, stresses are given at the bottom, middle and top cross-sectional points. The stress

% difference is based of the shell middle stress, Smiddle, and the analytical stress, S.

Table 11: Circular Membrane Thickness Study Results

t (m)
Analytical Membrane S3R Shell Element % Difference

U3 (m) S (Pa) U3 (m) Sbot tom (Pa) Smiddle (Pa) Stop (Pa) U3 (m) S

5.00E-06 -6.24E-03 3.22E+09 -6.02E-03 3.37E+09 3.37E+09 3.36E+09 3.59% 4.61%

6.00E-06 -5.87E-03 2.85E+09 -5.66E-03 2.98E+09 2.98E+09 2.97E+09 3.68% 4.49%

7.00E-06 -5.58E-03 2.57E+09 -5.37E-03 2.69E+09 2.68E+09 2.68E+09 3.74% 4.39%

8.00E-06 -5.34E-03 2.35E+09 -5.13E-03 2.46E+09 2.45E+09 2.45E+09 3.78% 4.32%

9.00E-06 -5.13E-03 2.17E+09 -4.93E-03 2.27E+09 2.27E+09 2.26E+09 3.82% 4.26%

1.00E-05 -4.95E-03 2.03E+09 -4.76E-03 2.12E+09 2.11E+09 2.11E+09 3.86% 4.21%

2.00E-05 -3.93E-03 1.28E+09 -3.77E-03 1.34E+09 1.33E+09 1.32E+09 4.03% 3.96%

3.00E-05 -3.43E-03 9.75E+08 -3.29E-03 1.02E+09 1.01E+09 1.00E+09 4.10% 3.85%

4.00E-05 -3.12E-03 8.05E+08 -2.99E-03 8.49E+08 8.35E+08 8.21E+08 4.13% 3.79%

5.00E-05 -2.90E-03 6.93E+08 -2.78E-03 7.36E+08 7.19E+08 7.03E+08 4.16% 3.75%

6.00E-05 -2.73E-03 6.14E+08 -2.61E-03 6.56E+08 6.37E+08 6.18E+08 4.17% 3.72%

7.00E-05 -2.59E-03 5.54E+08 -2.48E-03 5.95E+08 5.74E+08 5.54E+08 4.18% 3.69%

8.00E-05 -2.48E-03 5.07E+08 -2.37E-03 5.48E+08 5.25E+08 5.03E+08 4.19% 3.67%

9.00E-05 -2.38E-03 4.69E+08 -2.28E-03 5.10E+08 4.86E+08 4.61E+08 4.19% 3.64%

1.00E-04 -2.30E-03 4.37E+08 -2.20E-03 4.79E+08 4.53E+08 4.26E+08 4.19% 3.62%

2.00E-04 -1.82E-03 2.75E+08 -1.75E-03 3.27E+08 2.84E+08 2.42E+08 4.12% 3.33%

3.00E-04 -1.59E-03 2.10E+08 -1.53E-03 2.72E+08 2.16E+08 1.60E+08 3.98% 2.77%

4.00E-04 -1.45E-03 1.73E+08 -1.39E-03 2.46E+08 1.77E+08 1.07E+08 3.85% 1.85%

5.00E-04 -1.34E-03 1.49E+08 -1.29E-03 2.33E+08 1.50E+08 6.75E+07 3.85% 0.45%

6.00E-04 -1.27E-03 1.32E+08 -1.21E-03 2.27E+08 1.30E+08 3.36E+07 4.17% 1.60%

7.00E-04 -1.20E-03 1.19E+08 -1.14E-03 2.25E+08 1.14E+08 3.23E+06 4.99% 4.51%

Continued on next page
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Table 11 – continued from previous page

t (m)
Analytical Membrane S3R Shell Element % Difference

U3 (m) S (Pa) U3 (m) Sbot tom (Pa) Smiddle (Pa) Stop (Pa) U3 (m) S

8.00E-04 -1.15E-03 1.09E+08 -1.08E-03 2.24E+08 1.00E+08 2.43E+07 6.44% 8.40%

9.00E-04 -1.11E-03 1.01E+08 -1.01E-03 2.24E+08 8.75E+07 4.88E+07 8.61% 13.35%

1.00E-03 -1.07E-03 9.41E+07 -9.44E-04 2.22E+08 7.59E+07 7.00E+07 11.53% 19.34%

2.00E-03 -8.47E-04 5.93E+07 -3.14E-04 1.15E+08 8.23E+06 9.87E+07 62.95% 86.12%

3.00E-03 -7.40E-04 4.52E+07 -9.73E-05 5.06E+07 7.90E+05 4.90E+07 86.85% 98.25%

4.00E-03 -6.72E-04 3.73E+07 -4.12E-05 2.82E+07 1.42E+05 2.79E+07 93.87% 99.62%

5.00E-03 -6.24E-04 3.22E+07 -2.12E-05 1.80E+07 3.74E+04 1.79E+07 96.61% 99.88%

6.00E-03 -5.87E-04 2.85E+07 -1.23E-05 1.25E+07 1.26E+04 1.25E+07 97.90% 99.96%

7.00E-03 -5.58E-04 2.57E+07 -7.79E-06 9.17E+06 5.05E+03 9.16E+06 98.60% 99.98%

8.00E-03 -5.34E-04 2.35E+07 -5.25E-06 7.02E+06 2.29E+03 7.02E+06 99.02% 99.99%

9.00E-03 -5.13E-04 2.17E+07 -3.71E-06 5.55E+06 1.14E+03 5.55E+06 99.28% 99.99%

1.00E-02 -4.95E-04 2.03E+07 -2.72E-06 4.49E+06 6.16E+02 4.49E+06 99.45% 100.00%

2.00E-02 -3.93E-04 1.28E+07 -3.77E-07 1.12E+06 1.12E+01 1.12E+06 99.90% 100.00%

3.00E-02 -3.43E-04 9.75E+06 -1.30E-07 4.99E+05 1.21E+00 4.99E+05 99.96% 100.00%

4.00E-02 -3.12E-04 8.05E+06 -6.52E-08 2.81E+05 3.22E-01 2.81E+05 99.98% 100.00%

5.00E-02 -2.90E-04 6.93E+06 -4.04E-08 1.80E+05 1.30E-01 1.80E+05 99.99% 100.00%

6.00E-02 -2.73E-04 6.14E+06 -2.83E-08 1.25E+05 6.80E-02 1.25E+05 99.99% 100.00%

7.00E-02 -2.59E-04 5.54E+06 -2.15E-08 9.16E+04 4.10E-02 9.16E+04 99.99% 100.00%

8.00E-02 -2.48E-04 5.07E+06 -1.72E-08 7.02E+04 2.80E-02 7.02E+04 99.99% 100.00%

9.00E-02 -2.38E-04 4.69E+06 -1.44E-08 5.54E+04 2.00E-02 5.54E+04 99.99% 100.00%

1.00E-01 -2.30E-04 4.37E+06 -1.23E-08 4.49E+04 1.50E-02 4.49E+04 99.99% 100.00%

2.00E-01 -1.82E-04 2.75E+06 -5.17E-09 1.12E+04 3.00E-03 1.12E+04 100.00% 100.00%
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A.4 Triangular Membrane Convergence Study

The following table shows the results from the triangular membrane convergence

study, comparing the relative change in displacement and stress as the number of element

increases. The Newton Raphson with adaptive automatic stabilization technique is used

for the FEA.The model properties are: modulus of elasticity (303 GPa), Poison’s ratio

(0.25) and membrane thickness (1 mm). Edge Seed refers to the amount of elements

along each edge and # Elements is the resulting number of elements. U3 and U3 Di f f are

the magnitude and % error of the center out-of-plane displacement. S and SDi f f are the

magnitude and % error of the von Mises stress. Two error parameters are considered.

First, the i & i − 1 error considers the row i versus the row i − 1. Second, the i & iend error

considers the last row versus the row i.

Table 12: Triangular Membrane Convergence Study Results

Edge
Seed

# Elements U3 (m)
U3 Di f f :
i & i − 1

U3 Di f f :
i & iend

S (Pa)
SDi f f :
i & i − 1

SDi f f :
i & iend

5 25 -7.73E-04 - 2.7% 9.28E+07 - 3.1%

6 36 -8.86E-04 13.6% 0.7% 8.04E+07 14.4% 0.5%

7 49 -8.33E-04 6.2% 0.9% 7.15E+07 11.6% 3.4%

8 64 -8.30E-04 0.3% 0.9% 9.08E+07 23.8% 2.5%

9 81 -8.72E-04 5.0% 0.3% 8.18E+07 10.5% 0.1%

10 100 -8.46E-04 3.0% 0.4% 7.49E+07 8.7% 2.3%

11 121 -8.45E-04 0.1% 0.5% 8.91E+07 17.2% 2.0%

12 144 -8.68E-04 2.6% 0.2% 8.22E+07 8.0% 0.0%

13 169 -8.52E-04 1.8% 0.3% 7.67E+07 6.9% 1.7%

14 196 -8.52E-04 0.0% 0.3% 8.79E+07 13.5% 1.7%

15 225 -8.65E-04 1.6% 0.1% 8.24E+07 6.4% 0.1%

16 256 -8.55E-04 1.2% 0.2% 7.79E+07 5.7% 1.3%

17 289 -8.55E-04 0.0% 0.2% 8.71E+07 11.1% 1.5%

18 324 -8.64E-04 1.1% 0.1% 8.26E+07 5.3% 0.1%

19 361 -8.57E-04 0.8% 0.1% 7.87E+07 4.8% 1.1%

20 400 -8.57E-04 0.0% 0.1% 8.65E+07 9.4% 1.3%

21 441 -8.64E-04 0.8% 0.1% 8.26E+07 4.5% 0.2%
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Table 12 – continued from previous page

Edge
Seed

# Elements U3 (m)
U3 Di f f :
i & i − 1

U3 Di f f :
i & iend

S (Pa)
SDi f f :
i & i − 1

SDi f f :
i & iend

22 484 -8.58E-04 0.6% 0.1% 7.93E+07 4.2% 0.9%

23 529 -8.58E-04 0.0% 0.1% 8.60E+07 8.2% 1.2%

24 576 -8.63E-04 0.6% 0.0% 8.27E+07 4.0% 0.2%

25 625 -8.59E-04 0.5% 0.1% 7.97E+07 3.7% 0.7%

26 676 -8.59E-04 0.0% 0.1% 8.57E+07 7.2% 1.1%

27 729 -8.63E-04 0.5% 0.0% 8.27E+07 3.5% 0.2%

28 784 -8.60E-04 0.4% 0.1% 8.00E+07 3.3% 0.6%

29 841 -8.60E-04 0.0% 0.1% 8.54E+07 6.5% 1.0%

30 900 -8.63E-04 0.4% 0.0% 8.27E+07 3.2% 0.2%

31 961 -8.60E-04 0.3% 0.0% 8.03E+07 3.0% 0.6%

32 1024 -8.60E-04 0.0% 0.0% 8.51E+07 5.9% 0.9%

33 1089 -8.62E-04 0.3% 0.0% 8.27E+07 2.9% 0.2%

34 1156 -8.60E-04 0.3% 0.0% 8.05E+07 2.7% 0.5%

35 1225 -8.60E-04 0.0% 0.0% 8.50E+07 5.4% 0.9%

36 1296 -8.62E-04 0.2% 0.0% 8.28E+07 2.6% 0.2%

37 1369 -8.60E-04 0.2% 0.0% 8.07E+07 2.5% 0.4%

38 1312 -8.60E-04 0.0% 0.0% 8.40E+07 4.0% 0.6%

39 1383 -8.61E-04 0.1% 0.0% 8.32E+07 1.0% 0.3%

40 1470 -8.62E-04 0.1% 0.0% 8.30E+07 0.2% 0.3%

41 1551 -8.60E-04 0.1% 0.0% 8.13E+07 2.0% 0.2%

42 1624 -8.61E-04 0.1% 0.0% 8.24E+07 1.3% 0.1%

43 1689 -8.61E-04 0.0% 0.0% 8.26E+07 0.3% 0.2%

44 1746 -8.62E-04 0.1% 0.0% 8.31E+07 0.5% 0.3%

45 1845 -8.61E-04 0.1% 0.0% 8.25E+07 0.7% 0.1%

46 1954 -8.61E-04 0.1% 0.0% 8.33E+07 1.0% 0.4%

47 2037 -8.61E-04 0.0% 0.0% 8.10E+07 2.7% 0.3%

48 2098 -8.62E-04 0.1% 0.0% 8.28E+07 2.1% 0.2%

49 2199 -8.61E-04 0.0% 0.0% 8.27E+07 0.1% 0.2%

50 2296 -8.62E-04 0.0% - 8.21E+07 0.7% 0.0%
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A.5 Triangular Membrane Thickness Study

The following table shows the results from the triangular membrane thickness study,

comparing the M3D3 membrane and S3R shell elements. The model properties are:

modulus of elasticity (303 GPa), Poison’s ratio (0.37) and 1296 elements. The Newton

Raphson with adaptive automatic stabilization technique is used for the FEA. t refers to

the membrane thickness. U3, S and SE refer to the center out-of-plane displacement, von

Mises stress and strain energy, respectively. In case of the shell elements, stresses are

given at the middle cross-sectional point. The stress % difference is based of the shell

middle stress, Smiddle, and the analytical stress, S.

Table 13: Triangular Membrane Thickness Study Results

t (m)
M3D3 Membrane Element S3R Shell Element % Difference

U3 (m) S (Pa) SE (J) U3 (m) Smiddle (Pa) SE (J) U3 (m) S (Pa) SE (J)

1.00E-06 -8.82E-03 8.53E+09 1.199 -8.83E-03 8.53E+09 1.200 0.0271 0.0567 0.1075

2.00E-06 -6.94E-03 5.31E+09 0.927 -6.94E-03 5.31E+09 0.928 0.0246 0.0535 0.0981

3.00E-06 -6.04E-03 4.03E+09 0.802 -6.04E-03 4.04E+09 0.802 0.0237 0.0524 0.0946

4.00E-06 -5.48E-03 3.32E+09 0.725 -5.48E-03 3.32E+09 0.725 0.0005 0.0009 0.0014

5.00E-06 -5.08E-03 2.86E+09 0.670 -5.08E-03 2.86E+09 0.670 0.0004 0.0007 0.0012

6.00E-06 -4.78E-03 2.53E+09 0.629 -4.78E-03 2.53E+09 0.629 0.0009 0.0016 0.0033

7.00E-06 -4.54E-03 2.28E+09 0.596 -4.54E-03 2.28E+09 0.596 0.0008 0.0014 0.0030

8.00E-06 -4.34E-03 2.08E+09 0.570 -4.34E-03 2.08E+09 0.570 0.0002 0.0003 0.0005

9.00E-06 -4.17E-03 1.93E+09 0.547 -4.17E-03 1.93E+09 0.547 0.0000 0.0001 0.0004

1.00E-05 -4.02E-03 1.79E+09 0.528 -4.02E-03 1.79E+09 0.528 0.0001 0.0000 0.0002

2.00E-05 -3.19E-03 1.13E+09 0.416 -3.19E-03 1.13E+09 0.416 0.0015 0.0005 0.0014

3.00E-05 -2.78E-03 8.60E+08 0.363 -2.78E-03 8.60E+08 0.363 0.0022 0.0022 0.0083

4.00E-05 -2.53E-03 7.09E+08 0.329 -2.53E-03 7.09E+08 0.329 0.0018 0.0063 0.0185

5.00E-05 -2.34E-03 6.11E+08 0.306 -2.34E-03 6.11E+08 0.306 0.0014 0.0128 0.0337

6.00E-05 -2.21E-03 5.41E+08 0.287 -2.21E-03 5.41E+08 0.288 0.0019 0.0209 0.0550

7.00E-05 -2.09E-03 4.88E+08 0.273 -2.09E-03 4.88E+08 0.273 0.0022 0.0323 0.0799

8.00E-05 -2.00E-03 4.46E+08 0.261 -2.00E-03 4.46E+08 0.261 0.0041 0.0447 0.1145

9.00E-05 -1.93E-03 4.13E+08 0.251 -1.93E-03 4.12E+08 0.251 0.0050 0.0615 0.1518

1.00E-04 -1.86E-03 3.85E+08 0.242 -1.86E-03 3.84E+08 0.243 0.0051 0.0827 0.1915

2.00E-04 -1.48E-03 2.42E+08 0.192 -1.48E-03 2.41E+08 0.194 0.0162 0.4738 1.0066

3.00E-04 -1.29E-03 1.85E+08 0.168 -1.29E-03 1.82E+08 0.172 0.0406 1.3581 2.4043
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Table 13 – continued from previous page

t (m)
M3D3 Membrane Element S3R Shell Element % Difference

U3 (m) S (Pa) SE (J) U3 (m) Smiddle (Pa) SE (J) U3 (m) S (Pa) SE (J)

4.00E-04 -1.17E-03 1.52E+08 0.152 -1.17E-03 1.48E+08 0.159 0.2546 2.8519 4.2836

5.00E-04 -1.09E-03 1.31E+08 0.141 -1.08E-03 1.25E+08 0.151 0.7878 5.1426 6.5166

6.00E-04 -1.02E-03 1.16E+08 0.133 -1.00E-03 1.07E+08 0.145 1.9378 8.6649 8.7707

7.00E-04 -9.71E-04 1.05E+08 0.126 -9.33E-04 9.13E+07 0.141 4.0108 13.8849 10.8157

8.00E-04 -9.29E-04 9.60E+07 0.121 -8.64E-04 7.76E+07 0.137 7.2669 21.2229 12.3652

9.00E-04 -8.93E-04 8.88E+07 0.116 -7.93E-04 6.49E+07 0.132 11.9447 31.0949 12.9145

1.00E-03 -8.62E-04 8.28E+07 0.112 -7.18E-04 5.31E+07 0.126 18.2097 43.7233 11.9335

2.00E-03 -6.84E-04 5.21E+07 0.089 -1.64E-04 2.73E+06 0.035 122.8100 180.1238 86.3467
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A.6 Triangular Membrane Material Properties Study

The following table shows the results of the triangular membrane material properties

study for 400 M3D3 membrane elements. This study relates the changes in material

properties with the icosahedral skin response, where the skin is represented by the

triangle. The latter assumes that the frame remains rigid. The Newton Raphson with

adaptive automatic stabilization technique is used for the FEA. The ideal W/B is set at

0.4 (see Equation (2.14)) and the skin thickness, t, results from the given density and set

W/B (see Equation (2.15)). A three-dimensional input space was created with the

following parameters:

412 ≤ ρ ≤ 3000 kg/m3

100 ≤ E ≤ 1000 GPa

0.1 ≤ ν ≤ 0.4

where:

ρ = density

E = modulus of elasticity

ν = Poison’s ratio

Given the each input variable combination, the following results were considered:

center out-of-plane displacement(U3), strain energy(S E (J)) and skin weight-to-buoyancy

ratio (W/Bskin). The final skin W/B is calculated by including an estimation of the volume

lost due to the triangle’s deflection. This volume loss is estimated by numerical

integration of the triangular surface once deflected. The same study was conducted with

shell elements, but is not included here since it provided the same results.
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Table 14: Triangular Membrane Material Properties Study Results

ρ (kg/m3) t (m) E (Pa)
U3 (m) SE (J) W/Bskin

ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4

412 5.00E-05 1.00E+11 -3.68E-03 -3.58E-03 -3.47E-03 -3.34E-03 0.4770 0.4663 0.4529 0.4364 0.4174 0.4170 0.4165 0.4159

412 5.00E-05 1.38E+11 -3.30E-03 -3.22E-03 -3.12E-03 -3.00E-03 0.4280 0.4185 0.4065 0.3917 0.4156 0.4152 0.4148 0.4142

412 5.00E-05 1.75E+11 -3.05E-03 -2.97E-03 -2.87E-03 -2.77E-03 0.3944 0.3857 0.3746 0.3610 0.4143 0.4140 0.4136 0.4131

412 5.00E-05 2.13E+11 -2.86E-03 -2.78E-03 -2.69E-03 -2.59E-03 0.3694 0.3612 0.3508 0.3381 0.4134 0.4131 0.4127 0.4122

412 5.00E-05 2.50E+11 -2.70E-03 -2.63E-03 -2.55E-03 -2.45E-03 0.3495 0.3418 0.3320 0.3200 0.4126 0.4124 0.4120 0.4115

412 5.00E-05 2.88E+11 -2.58E-03 -2.51E-03 -2.43E-03 -2.34E-03 0.3334 0.3260 0.3167 0.3052 0.4120 0.4118 0.4114 0.4110

412 5.00E-05 3.25E+11 -2.48E-03 -2.41E-03 -2.34E-03 -2.25E-03 0.3199 0.3128 0.3039 0.2929 0.4115 0.4113 0.4110 0.4106

412 5.00E-05 3.63E+11 -2.39E-03 -2.33E-03 -2.25E-03 -2.17E-03 0.3084 0.3016 0.2929 0.2823 0.4111 0.4109 0.4106 0.4102

412 5.00E-05 4.00E+11 -2.31E-03 -2.25E-03 -2.18E-03 -2.10E-03 0.2983 0.2917 0.2834 0.2732 0.4108 0.4105 0.4102 0.4098

412 5.00E-05 4.38E+11 -2.24E-03 -2.18E-03 -2.12E-03 -2.04E-03 0.2895 0.2831 0.2750 0.2651 0.4104 0.4102 0.4099 0.4095

412 5.00E-05 4.75E+11 -2.18E-03 -2.13E-03 -2.06E-03 -1.98E-03 0.2816 0.2754 0.2675 0.2578 0.4101 0.4099 0.4096 0.4093

412 5.00E-05 5.13E+11 -2.13E-03 -2.07E-03 -2.01E-03 -1.93E-03 0.2745 0.2684 0.2608 0.2514 0.4099 0.4097 0.4094 0.4090

412 5.00E-05 5.50E+11 -2.08E-03 -2.02E-03 -1.96E-03 -1.89E-03 0.2681 0.2622 0.2547 0.2455 0.4096 0.4094 0.4091 0.4088

412 5.00E-05 5.88E+11 -2.03E-03 -1.98E-03 -1.92E-03 -1.84E-03 0.2623 0.2565 0.2492 0.2402 0.4094 0.4092 0.4089 0.4086

412 5.00E-05 6.25E+11 -1.99E-03 -1.94E-03 -1.88E-03 -1.81E-03 0.2569 0.2512 0.2440 0.2352 0.4092 0.4090 0.4088 0.4084

412 5.00E-05 6.63E+11 -1.95E-03 -1.90E-03 -1.84E-03 -1.77E-03 0.2519 0.2463 0.2393 0.2307 0.4090 0.4088 0.4086 0.4083

412 5.00E-05 7.00E+11 -1.92E-03 -1.87E-03 -1.81E-03 -1.74E-03 0.2473 0.2418 0.2349 0.2265 0.4089 0.4087 0.4084 0.4081

412 5.00E-05 7.38E+11 -1.88E-03 -1.83E-03 -1.78E-03 -1.71E-03 0.2430 0.2376 0.2309 0.2225 0.4087 0.4085 0.4083 0.4080

412 5.00E-05 7.75E+11 -1.85E-03 -1.80E-03 -1.75E-03 -1.68E-03 0.2390 0.2337 0.2271 0.2189 0.4086 0.4084 0.4081 0.4078

412 5.00E-05 8.13E+11 -1.82E-03 -1.78E-03 -1.72E-03 -1.65E-03 0.2352 0.2300 0.2235 0.2154 0.4084 0.4082 0.4080 0.4077

412 5.00E-05 8.50E+11 -1.80E-03 -1.75E-03 -1.69E-03 -1.63E-03 0.2317 0.2266 0.2201 0.2121 0.4083 0.4081 0.4079 0.4076

412 5.00E-05 8.88E+11 -1.77E-03 -1.72E-03 -1.67E-03 -1.61E-03 0.2283 0.2233 0.2169 0.2091 0.4082 0.4080 0.4078 0.4075

412 5.00E-05 9.25E+11 -1.75E-03 -1.70E-03 -1.65E-03 -1.58E-03 0.2252 0.2202 0.2139 0.2063 0.4081 0.4079 0.4077 0.4074

412 5.00E-05 9.63E+11 -1.72E-03 -1.68E-03 -1.63E-03 -1.56E-03 0.2223 0.2174 0.2112 0.2035 0.4080 0.4078 0.4076 0.4073

412 5.00E-05 1.00E+12 -1.70E-03 -1.66E-03 -1.61E-03 -1.54E-03 0.2194 0.2146 0.2085 0.2010 0.4079 0.4077 0.4075 0.4072

520 3.96E-05 1.00E+11 -3.98E-03 -3.87E-03 -3.75E-03 -3.61E-03 0.5165 0.5049 0.4903 0.4724 0.4189 0.4185 0.4179 0.4172
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Table 14 – continued from previous page

ρ (kg/m3) t (m) E (Pa)
U3 (m) SE (J) W/Bskin

ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4

520 3.96E-05 1.38E+11 -3.57E-03 -3.48E-03 -3.37E-03 -3.24E-03 0.4633 0.4529 0.4399 0.4239 0.4169 0.4165 0.4160 0.4154

520 3.96E-05 1.75E+11 -3.30E-03 -3.21E-03 -3.11E-03 -2.99E-03 0.4268 0.4173 0.4053 0.3906 0.4155 0.4152 0.4147 0.4142

520 3.96E-05 2.13E+11 -3.09E-03 -3.01E-03 -2.91E-03 -2.80E-03 0.3996 0.3907 0.3795 0.3657 0.4145 0.4142 0.4138 0.4132

520 3.96E-05 2.50E+11 -2.92E-03 -2.85E-03 -2.76E-03 -2.65E-03 0.3782 0.3698 0.3592 0.3462 0.4137 0.4134 0.4130 0.4125

520 3.96E-05 2.88E+11 -2.79E-03 -2.72E-03 -2.63E-03 -2.53E-03 0.3607 0.3527 0.3426 0.3302 0.4131 0.4128 0.4124 0.4119

520 3.96E-05 3.25E+11 -2.68E-03 -2.61E-03 -2.53E-03 -2.43E-03 0.3461 0.3384 0.3287 0.3168 0.4125 0.4122 0.4119 0.4114

520 3.96E-05 3.63E+11 -2.58E-03 -2.51E-03 -2.44E-03 -2.34E-03 0.3335 0.3261 0.3168 0.3053 0.4121 0.4118 0.4114 0.4110

520 3.96E-05 4.00E+11 -2.50E-03 -2.43E-03 -2.36E-03 -2.27E-03 0.3227 0.3155 0.3065 0.2954 0.4116 0.4114 0.4111 0.4106

520 3.96E-05 4.38E+11 -2.42E-03 -2.36E-03 -2.29E-03 -2.20E-03 0.3131 0.3061 0.2974 0.2866 0.4113 0.4110 0.4107 0.4103

520 3.96E-05 4.75E+11 -2.36E-03 -2.30E-03 -2.22E-03 -2.14E-03 0.3045 0.2978 0.2893 0.2788 0.4110 0.4107 0.4104 0.4100

520 3.96E-05 5.13E+11 -2.30E-03 -2.24E-03 -2.17E-03 -2.09E-03 0.2968 0.2903 0.2820 0.2718 0.4107 0.4105 0.4101 0.4098

520 3.96E-05 5.50E+11 -2.25E-03 -2.19E-03 -2.12E-03 -2.04E-03 0.2899 0.2835 0.2754 0.2654 0.4104 0.4102 0.4099 0.4095

520 3.96E-05 5.88E+11 -2.20E-03 -2.14E-03 -2.07E-03 -1.99E-03 0.2835 0.2772 0.2693 0.2596 0.4102 0.4100 0.4097 0.4093

520 3.96E-05 6.25E+11 -2.15E-03 -2.10E-03 -2.03E-03 -1.95E-03 0.2777 0.2715 0.2638 0.2543 0.4100 0.4098 0.4095 0.4091

520 3.96E-05 6.63E+11 -2.11E-03 -2.06E-03 -1.99E-03 -1.91E-03 0.2723 0.2664 0.2588 0.2494 0.4098 0.4096 0.4093 0.4090

520 3.96E-05 7.00E+11 -2.07E-03 -2.02E-03 -1.95E-03 -1.88E-03 0.2674 0.2615 0.2540 0.2448 0.4096 0.4094 0.4091 0.4088

520 3.96E-05 7.38E+11 -2.04E-03 -1.98E-03 -1.92E-03 -1.85E-03 0.2627 0.2569 0.2496 0.2406 0.4094 0.4092 0.4090 0.4086

520 3.96E-05 7.75E+11 -2.00E-03 -1.95E-03 -1.89E-03 -1.82E-03 0.2584 0.2527 0.2455 0.2366 0.4093 0.4091 0.4088 0.4085

520 3.96E-05 8.13E+11 -1.97E-03 -1.92E-03 -1.86E-03 -1.79E-03 0.2543 0.2487 0.2416 0.2329 0.4091 0.4089 0.4087 0.4083

520 3.96E-05 8.50E+11 -1.94E-03 -1.89E-03 -1.83E-03 -1.76E-03 0.2505 0.2450 0.2380 0.2293 0.4090 0.4088 0.4085 0.4082

520 3.96E-05 8.88E+11 -1.91E-03 -1.86E-03 -1.81E-03 -1.74E-03 0.2469 0.2414 0.2345 0.2260 0.4089 0.4087 0.4084 0.4081

520 3.96E-05 9.25E+11 -1.89E-03 -1.84E-03 -1.78E-03 -1.71E-03 0.2434 0.2381 0.2313 0.2229 0.4087 0.4085 0.4083 0.4080

520 3.96E-05 9.63E+11 -1.86E-03 -1.81E-03 -1.76E-03 -1.69E-03 0.2402 0.2349 0.2282 0.2200 0.4086 0.4084 0.4082 0.4079

520 3.96E-05 1.00E+12 -1.84E-03 -1.79E-03 -1.73E-03 -1.67E-03 0.2372 0.2319 0.2253 0.2172 0.4085 0.4083 0.4081 0.4078

628 3.28E-05 1.00E+11 -4.24E-03 -4.13E-03 -4.00E-03 -3.84E-03 0.5510 0.5386 0.5231 0.5039 0.4202 0.4197 0.4191 0.4184

628 3.28E-05 1.38E+11 -3.81E-03 -3.71E-03 -3.59E-03 -3.45E-03 0.4941 0.4830 0.4691 0.4520 0.4180 0.4176 0.4171 0.4165

628 3.28E-05 1.75E+11 -3.51E-03 -3.42E-03 -3.31E-03 -3.18E-03 0.4551 0.4449 0.4321 0.4164 0.4166 0.4162 0.4157 0.4151

628 3.28E-05 2.13E+11 -3.29E-03 -3.20E-03 -3.10E-03 -2.98E-03 0.4260 0.4165 0.4046 0.3899 0.4155 0.4151 0.4147 0.4141
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Table 14 – continued from previous page

ρ (kg/m3) t (m) E (Pa)
U3 (m) SE (J) W/Bskin

ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4

628 3.28E-05 2.50E+11 -3.11E-03 -3.03E-03 -2.94E-03 -2.83E-03 0.4032 0.3942 0.3829 0.3690 0.4146 0.4143 0.4139 0.4134

628 3.28E-05 2.88E+11 -2.97E-03 -2.89E-03 -2.80E-03 -2.70E-03 0.3845 0.3760 0.3652 0.3520 0.4139 0.4136 0.4132 0.4127

628 3.28E-05 3.25E+11 -2.85E-03 -2.78E-03 -2.69E-03 -2.59E-03 0.3689 0.3607 0.3504 0.3377 0.4134 0.4131 0.4127 0.4122

628 3.28E-05 3.63E+11 -2.75E-03 -2.68E-03 -2.59E-03 -2.50E-03 0.3555 0.3476 0.3376 0.3254 0.4129 0.4126 0.4122 0.4118

628 3.28E-05 4.00E+11 -2.66E-03 -2.59E-03 -2.51E-03 -2.41E-03 0.3440 0.3362 0.3267 0.3149 0.4124 0.4122 0.4118 0.4114

628 3.28E-05 4.38E+11 -2.58E-03 -2.52E-03 -2.44E-03 -2.34E-03 0.3337 0.3263 0.3169 0.3054 0.4121 0.4118 0.4114 0.4110

628 3.28E-05 4.75E+11 -2.51E-03 -2.45E-03 -2.37E-03 -2.28E-03 0.3245 0.3173 0.3082 0.2971 0.4117 0.4115 0.4111 0.4107

628 3.28E-05 5.13E+11 -2.45E-03 -2.39E-03 -2.31E-03 -2.22E-03 0.3163 0.3093 0.3005 0.2896 0.4114 0.4112 0.4108 0.4104

628 3.28E-05 5.50E+11 -2.39E-03 -2.33E-03 -2.26E-03 -2.17E-03 0.3089 0.3020 0.2934 0.2828 0.4111 0.4109 0.4106 0.4102

628 3.28E-05 5.88E+11 -2.34E-03 -2.28E-03 -2.21E-03 -2.12E-03 0.3021 0.2954 0.2870 0.2766 0.4109 0.4106 0.4103 0.4100

628 3.28E-05 6.25E+11 -2.29E-03 -2.23E-03 -2.16E-03 -2.08E-03 0.2959 0.2893 0.2811 0.2709 0.4107 0.4104 0.4101 0.4097

628 3.28E-05 6.63E+11 -2.25E-03 -2.19E-03 -2.12E-03 -2.04E-03 0.2901 0.2837 0.2756 0.2656 0.4104 0.4102 0.4099 0.4095

628 3.28E-05 7.00E+11 -2.21E-03 -2.15E-03 -2.08E-03 -2.00E-03 0.2848 0.2785 0.2706 0.2608 0.4103 0.4100 0.4097 0.4094

628 3.28E-05 7.38E+11 -2.17E-03 -2.11E-03 -2.05E-03 -1.97E-03 0.2799 0.2737 0.2659 0.2562 0.4101 0.4098 0.4096 0.4092

628 3.28E-05 7.75E+11 -2.13E-03 -2.08E-03 -2.01E-03 -1.94E-03 0.2752 0.2691 0.2615 0.2520 0.4099 0.4097 0.4094 0.4090

628 3.28E-05 8.13E+11 -2.10E-03 -2.04E-03 -1.98E-03 -1.91E-03 0.2709 0.2649 0.2574 0.2481 0.4097 0.4095 0.4092 0.4089

628 3.28E-05 8.50E+11 -2.07E-03 -2.01E-03 -1.95E-03 -1.88E-03 0.2668 0.2609 0.2535 0.2443 0.4096 0.4094 0.4091 0.4088

628 3.28E-05 8.88E+11 -2.04E-03 -1.99E-03 -1.92E-03 -1.85E-03 0.2630 0.2572 0.2498 0.2408 0.4095 0.4092 0.4090 0.4086

628 3.28E-05 9.25E+11 -2.01E-03 -1.96E-03 -1.90E-03 -1.82E-03 0.2594 0.2536 0.2464 0.2375 0.4093 0.4091 0.4088 0.4085

628 3.28E-05 9.63E+11 -1.98E-03 -1.93E-03 -1.87E-03 -1.80E-03 0.2559 0.2503 0.2431 0.2343 0.4092 0.4090 0.4087 0.4084

628 3.28E-05 1.00E+12 -1.96E-03 -1.91E-03 -1.85E-03 -1.78E-03 0.2527 0.2471 0.2400 0.2314 0.4091 0.4089 0.4086 0.4083

736 2.80E-05 1.00E+11 -4.47E-03 -4.35E-03 -4.21E-03 -4.05E-03 0.5820 0.5688 0.5523 0.5321 0.4214 0.4209 0.4202 0.4195

736 2.80E-05 1.38E+11 -4.01E-03 -3.91E-03 -3.79E-03 -3.64E-03 0.5217 0.5100 0.4952 0.4771 0.4191 0.4186 0.4181 0.4174

736 2.80E-05 1.75E+11 -3.70E-03 -3.61E-03 -3.49E-03 -3.36E-03 0.4804 0.4696 0.4561 0.4395 0.4175 0.4171 0.4166 0.4160

736 2.80E-05 2.13E+11 -3.47E-03 -3.38E-03 -3.27E-03 -3.15E-03 0.4496 0.4396 0.4269 0.4114 0.4164 0.4160 0.4155 0.4149

736 2.80E-05 2.50E+11 -3.28E-03 -3.20E-03 -3.10E-03 -2.98E-03 0.4255 0.4160 0.4040 0.3894 0.4155 0.4151 0.4147 0.4141

736 2.80E-05 2.88E+11 -3.13E-03 -3.05E-03 -2.96E-03 -2.84E-03 0.4058 0.3967 0.3854 0.3714 0.4147 0.4144 0.4140 0.4135

736 2.80E-05 3.25E+11 -3.01E-03 -2.93E-03 -2.84E-03 -2.73E-03 0.3893 0.3806 0.3697 0.3563 0.4141 0.4138 0.4134 0.4129
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Table 14 – continued from previous page

ρ (kg/m3) t (m) E (Pa)
U3 (m) SE (J) W/Bskin

ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4

736 2.80E-05 3.63E+11 -2.90E-03 -2.82E-03 -2.74E-03 -2.63E-03 0.3752 0.3668 0.3563 0.3434 0.4136 0.4133 0.4129 0.4124

736 2.80E-05 4.00E+11 -2.81E-03 -2.73E-03 -2.65E-03 -2.55E-03 0.3629 0.3547 0.3447 0.3322 0.4131 0.4128 0.4125 0.4120

736 2.80E-05 4.38E+11 -2.72E-03 -2.65E-03 -2.57E-03 -2.47E-03 0.3521 0.3443 0.3343 0.3222 0.4127 0.4124 0.4121 0.4116

736 2.80E-05 4.75E+11 -2.65E-03 -2.58E-03 -2.50E-03 -2.40E-03 0.3423 0.3347 0.3252 0.3134 0.4124 0.4121 0.4117 0.4113

736 2.80E-05 5.13E+11 -2.58E-03 -2.52E-03 -2.44E-03 -2.34E-03 0.3337 0.3263 0.3169 0.3055 0.4121 0.4118 0.4114 0.4110

736 2.80E-05 5.50E+11 -2.52E-03 -2.46E-03 -2.38E-03 -2.29E-03 0.3258 0.3186 0.3095 0.2983 0.4118 0.4115 0.4112 0.4107

736 2.80E-05 5.88E+11 -2.47E-03 -2.40E-03 -2.33E-03 -2.24E-03 0.3187 0.3116 0.3027 0.2917 0.4115 0.4112 0.4109 0.4105

736 2.80E-05 6.25E+11 -2.42E-03 -2.35E-03 -2.28E-03 -2.19E-03 0.3121 0.3052 0.2965 0.2857 0.4113 0.4110 0.4107 0.4103

736 2.80E-05 6.63E+11 -2.37E-03 -2.31E-03 -2.24E-03 -2.15E-03 0.3060 0.2993 0.2907 0.2802 0.4110 0.4108 0.4105 0.4101

736 2.80E-05 7.00E+11 -2.33E-03 -2.27E-03 -2.19E-03 -2.11E-03 0.3004 0.2938 0.2854 0.2751 0.4108 0.4106 0.4103 0.4099

736 2.80E-05 7.38E+11 -2.29E-03 -2.23E-03 -2.16E-03 -2.07E-03 0.2952 0.2887 0.2804 0.2703 0.4106 0.4104 0.4101 0.4097

736 2.80E-05 7.75E+11 -2.25E-03 -2.19E-03 -2.12E-03 -2.04E-03 0.2903 0.2839 0.2758 0.2658 0.4105 0.4102 0.4099 0.4096

736 2.80E-05 8.13E+11 -2.21E-03 -2.16E-03 -2.09E-03 -2.01E-03 0.2857 0.2794 0.2714 0.2616 0.4103 0.4101 0.4098 0.4094

736 2.80E-05 8.50E+11 -2.18E-03 -2.12E-03 -2.06E-03 -1.98E-03 0.2814 0.2752 0.2674 0.2577 0.4101 0.4099 0.4096 0.4093

736 2.80E-05 8.88E+11 -2.15E-03 -2.09E-03 -2.03E-03 -1.95E-03 0.2774 0.2712 0.2635 0.2540 0.4100 0.4098 0.4095 0.4091

736 2.80E-05 9.25E+11 -2.12E-03 -2.06E-03 -2.00E-03 -1.92E-03 0.2736 0.2675 0.2599 0.2505 0.4098 0.4096 0.4093 0.4090

736 2.80E-05 9.63E+11 -2.09E-03 -2.04E-03 -1.97E-03 -1.90E-03 0.2699 0.2640 0.2564 0.2472 0.4097 0.4095 0.4092 0.4089

736 2.80E-05 1.00E+12 -2.07E-03 -2.01E-03 -1.95E-03 -1.87E-03 0.2665 0.2606 0.2532 0.2440 0.4096 0.4094 0.4091 0.4088

843 2.44E-05 1.00E+11 -4.68E-03 -4.55E-03 -4.41E-03 -4.24E-03 0.6099 0.5961 0.5788 0.5575 0.4224 0.4219 0.4213 0.4204

843 2.44E-05 1.38E+11 -4.20E-03 -4.09E-03 -3.96E-03 -3.81E-03 0.5465 0.5342 0.5188 0.4998 0.4200 0.4196 0.4190 0.4183

843 2.44E-05 1.75E+11 -3.87E-03 -3.77E-03 -3.65E-03 -3.52E-03 0.5031 0.4919 0.4777 0.4603 0.4184 0.4180 0.4174 0.4168

843 2.44E-05 2.13E+11 -3.63E-03 -3.54E-03 -3.42E-03 -3.29E-03 0.4709 0.4604 0.4471 0.4308 0.4172 0.4168 0.4163 0.4157

843 2.44E-05 2.50E+11 -3.44E-03 -3.35E-03 -3.24E-03 -3.12E-03 0.4455 0.4356 0.4231 0.4077 0.4162 0.4158 0.4154 0.4148

843 2.44E-05 2.88E+11 -3.28E-03 -3.19E-03 -3.09E-03 -2.98E-03 0.4249 0.4154 0.4035 0.3888 0.4154 0.4151 0.4146 0.4141

843 2.44E-05 3.25E+11 -3.15E-03 -3.07E-03 -2.97E-03 -2.86E-03 0.4076 0.3985 0.3871 0.3730 0.4148 0.4145 0.4140 0.4135

843 2.44E-05 3.63E+11 -3.04E-03 -2.96E-03 -2.86E-03 -2.75E-03 0.3928 0.3840 0.3730 0.3595 0.4142 0.4139 0.4135 0.4130

843 2.44E-05 4.00E+11 -2.94E-03 -2.86E-03 -2.77E-03 -2.66E-03 0.3799 0.3715 0.3608 0.3477 0.4138 0.4135 0.4131 0.4126

843 2.44E-05 4.38E+11 -2.85E-03 -2.78E-03 -2.69E-03 -2.59E-03 0.3686 0.3604 0.3500 0.3373 0.4133 0.4130 0.4127 0.4122
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Table 14 – continued from previous page

ρ (kg/m3) t (m) E (Pa)
U3 (m) SE (J) W/Bskin

ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4

843 2.44E-05 4.75E+11 -2.77E-03 -2.70E-03 -2.61E-03 -2.52E-03 0.3584 0.3504 0.3404 0.3281 0.4130 0.4127 0.4123 0.4118

843 2.44E-05 5.13E+11 -2.70E-03 -2.63E-03 -2.55E-03 -2.45E-03 0.3493 0.3415 0.3318 0.3198 0.4126 0.4123 0.4120 0.4115

843 2.44E-05 5.50E+11 -2.64E-03 -2.57E-03 -2.49E-03 -2.39E-03 0.3411 0.3335 0.3240 0.3122 0.4123 0.4121 0.4117 0.4113

843 2.44E-05 5.88E+11 -2.58E-03 -2.51E-03 -2.44E-03 -2.34E-03 0.3336 0.3262 0.3169 0.3054 0.4121 0.4118 0.4114 0.4110

843 2.44E-05 6.25E+11 -2.53E-03 -2.46E-03 -2.39E-03 -2.29E-03 0.3267 0.3194 0.3103 0.2991 0.4118 0.4115 0.4112 0.4108

843 2.44E-05 6.63E+11 -2.48E-03 -2.42E-03 -2.34E-03 -2.25E-03 0.3203 0.3132 0.3043 0.2933 0.4116 0.4113 0.4110 0.4106

843 2.44E-05 7.00E+11 -2.44E-03 -2.37E-03 -2.30E-03 -2.21E-03 0.3145 0.3075 0.2987 0.2879 0.4113 0.4111 0.4108 0.4104

843 2.44E-05 7.38E+11 -2.39E-03 -2.33E-03 -2.26E-03 -2.17E-03 0.3090 0.3021 0.2935 0.2829 0.4111 0.4109 0.4106 0.4102

843 2.44E-05 7.75E+11 -2.35E-03 -2.29E-03 -2.22E-03 -2.14E-03 0.3039 0.2971 0.2887 0.2782 0.4110 0.4107 0.4104 0.4100

843 2.44E-05 8.13E+11 -2.32E-03 -2.26E-03 -2.19E-03 -2.10E-03 0.2991 0.2925 0.2841 0.2738 0.4108 0.4105 0.4102 0.4098

843 2.44E-05 8.50E+11 -2.28E-03 -2.22E-03 -2.15E-03 -2.07E-03 0.2946 0.2880 0.2798 0.2697 0.4106 0.4104 0.4101 0.4097

843 2.44E-05 8.88E+11 -2.25E-03 -2.19E-03 -2.12E-03 -2.04E-03 0.2903 0.2839 0.2758 0.2658 0.4105 0.4102 0.4099 0.4096

843 2.44E-05 9.25E+11 -2.22E-03 -2.16E-03 -2.09E-03 -2.01E-03 0.2863 0.2800 0.2720 0.2622 0.4103 0.4101 0.4098 0.4094

843 2.44E-05 9.63E+11 -2.19E-03 -2.13E-03 -2.06E-03 -1.99E-03 0.2825 0.2763 0.2684 0.2587 0.4102 0.4099 0.4096 0.4093

843 2.44E-05 1.00E+12 -2.16E-03 -2.10E-03 -2.04E-03 -1.96E-03 0.2789 0.2727 0.2650 0.2554 0.4100 0.4098 0.4095 0.4092

951 2.17E-05 1.00E+11 -4.87E-03 -4.74E-03 -4.59E-03 -4.42E-03 0.6359 0.6215 0.6034 0.5812 0.4234 0.4229 0.4222 0.4213

951 2.17E-05 1.38E+11 -4.38E-03 -4.26E-03 -4.13E-03 -3.97E-03 0.5696 0.5568 0.5407 0.5209 0.4209 0.4204 0.4198 0.4191

951 2.17E-05 1.75E+11 -4.04E-03 -3.93E-03 -3.81E-03 -3.66E-03 0.5244 0.5126 0.4978 0.4796 0.4192 0.4187 0.4182 0.4175

951 2.17E-05 2.13E+11 -3.78E-03 -3.68E-03 -3.57E-03 -3.43E-03 0.4907 0.4796 0.4659 0.4489 0.4179 0.4175 0.4170 0.4163

951 2.17E-05 2.50E+11 -3.58E-03 -3.49E-03 -3.38E-03 -3.25E-03 0.4642 0.4538 0.4408 0.4247 0.4169 0.4165 0.4160 0.4154

951 2.17E-05 2.88E+11 -3.42E-03 -3.33E-03 -3.22E-03 -3.10E-03 0.4426 0.4328 0.4203 0.4050 0.4161 0.4157 0.4153 0.4147

951 2.17E-05 3.25E+11 -3.28E-03 -3.19E-03 -3.09E-03 -2.97E-03 0.4246 0.4151 0.4032 0.3886 0.4154 0.4151 0.4146 0.4141

951 2.17E-05 3.63E+11 -3.16E-03 -3.08E-03 -2.98E-03 -2.87E-03 0.4092 0.4000 0.3886 0.3744 0.4149 0.4145 0.4141 0.4136

951 2.17E-05 4.00E+11 -3.06E-03 -2.98E-03 -2.88E-03 -2.77E-03 0.3957 0.3869 0.3758 0.3622 0.4144 0.4140 0.4136 0.4131

951 2.17E-05 4.38E+11 -2.97E-03 -2.89E-03 -2.80E-03 -2.69E-03 0.3839 0.3754 0.3645 0.3513 0.4139 0.4136 0.4132 0.4127

951 2.17E-05 4.75E+11 -2.89E-03 -2.81E-03 -2.72E-03 -2.62E-03 0.3733 0.3650 0.3545 0.3417 0.4135 0.4132 0.4128 0.4124

951 2.17E-05 5.13E+11 -2.81E-03 -2.74E-03 -2.65E-03 -2.55E-03 0.3638 0.3557 0.3455 0.3330 0.4132 0.4129 0.4125 0.4120

951 2.17E-05 5.50E+11 -2.75E-03 -2.68E-03 -2.59E-03 -2.49E-03 0.3552 0.3473 0.3374 0.3252 0.4129 0.4126 0.4122 0.4117
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Table 14 – continued from previous page

ρ (kg/m3) t (m) E (Pa)
U3 (m) SE (J) W/Bskin

ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4

951 2.17E-05 5.88E+11 -2.69E-03 -2.62E-03 -2.54E-03 -2.44E-03 0.3474 0.3397 0.3300 0.3180 0.4126 0.4123 0.4119 0.4115

951 2.17E-05 6.25E+11 -2.63E-03 -2.56E-03 -2.48E-03 -2.39E-03 0.3402 0.3327 0.3232 0.3115 0.4123 0.4120 0.4117 0.4112

951 2.17E-05 6.63E+11 -2.58E-03 -2.51E-03 -2.44E-03 -2.34E-03 0.3336 0.3262 0.3169 0.3054 0.4121 0.4118 0.4114 0.4110

951 2.17E-05 7.00E+11 -2.54E-03 -2.47E-03 -2.39E-03 -2.30E-03 0.3275 0.3202 0.3111 0.2998 0.4118 0.4116 0.4112 0.4108

951 2.17E-05 7.38E+11 -2.49E-03 -2.43E-03 -2.35E-03 -2.26E-03 0.3218 0.3146 0.3057 0.2946 0.4116 0.4114 0.4110 0.4106

951 2.17E-05 7.75E+11 -2.45E-03 -2.39E-03 -2.31E-03 -2.22E-03 0.3164 0.3094 0.3006 0.2897 0.4114 0.4112 0.4108 0.4104

951 2.17E-05 8.13E+11 -2.41E-03 -2.35E-03 -2.27E-03 -2.19E-03 0.3115 0.3046 0.2959 0.2852 0.4112 0.4110 0.4107 0.4103

951 2.17E-05 8.50E+11 -2.38E-03 -2.31E-03 -2.24E-03 -2.16E-03 0.3068 0.3000 0.2914 0.2809 0.4111 0.4108 0.4105 0.4101

951 2.17E-05 8.88E+11 -2.34E-03 -2.28E-03 -2.21E-03 -2.12E-03 0.3023 0.2956 0.2872 0.2768 0.4109 0.4107 0.4103 0.4100

951 2.17E-05 9.25E+11 -2.31E-03 -2.25E-03 -2.18E-03 -2.10E-03 0.2982 0.2916 0.2832 0.2730 0.4107 0.4105 0.4102 0.4098

951 2.17E-05 9.63E+11 -2.28E-03 -2.22E-03 -2.15E-03 -2.07E-03 0.2942 0.2877 0.2795 0.2694 0.4106 0.4104 0.4101 0.4097

951 2.17E-05 1.00E+12 -2.25E-03 -2.19E-03 -2.12E-03 -2.04E-03 0.2904 0.2840 0.2759 0.2659 0.4105 0.4102 0.4099 0.4096

1059 1.94E-05 1.00E+11 -5.05E-03 -4.92E-03 -4.76E-03 -4.58E-03 0.6601 0.6451 0.6263 0.6032 0.4243 0.4238 0.4231 0.4222

1059 1.94E-05 1.38E+11 -4.54E-03 -4.42E-03 -4.28E-03 -4.12E-03 0.5911 0.5778 0.5610 0.5404 0.4217 0.4212 0.4206 0.4198

1059 1.94E-05 1.75E+11 -4.18E-03 -4.07E-03 -3.95E-03 -3.80E-03 0.5441 0.5318 0.5165 0.4976 0.4199 0.4195 0.4189 0.4182

1059 1.94E-05 2.13E+11 -3.92E-03 -3.82E-03 -3.70E-03 -3.56E-03 0.5091 0.4976 0.4833 0.4656 0.4186 0.4182 0.4176 0.4170

1059 1.94E-05 2.50E+11 -3.71E-03 -3.61E-03 -3.50E-03 -3.37E-03 0.4815 0.4708 0.4572 0.4405 0.4176 0.4172 0.4167 0.4160

1059 1.94E-05 2.88E+11 -3.54E-03 -3.45E-03 -3.34E-03 -3.21E-03 0.4592 0.4489 0.4360 0.4201 0.4167 0.4163 0.4159 0.4153

1059 1.94E-05 3.25E+11 -3.40E-03 -3.31E-03 -3.21E-03 -3.08E-03 0.4404 0.4306 0.4182 0.4030 0.4160 0.4157 0.4152 0.4146

1059 1.94E-05 3.63E+11 -3.28E-03 -3.19E-03 -3.09E-03 -2.97E-03 0.4244 0.4149 0.4030 0.3883 0.4154 0.4151 0.4146 0.4141

1059 1.94E-05 4.00E+11 -3.17E-03 -3.09E-03 -2.99E-03 -2.88E-03 0.4104 0.4013 0.3898 0.3756 0.4149 0.4146 0.4141 0.4136

1059 1.94E-05 4.38E+11 -3.08E-03 -3.00E-03 -2.90E-03 -2.79E-03 0.3982 0.3893 0.3780 0.3643 0.4144 0.4141 0.4137 0.4132

1059 1.94E-05 4.75E+11 -2.99E-03 -2.91E-03 -2.82E-03 -2.72E-03 0.3871 0.3785 0.3676 0.3543 0.4140 0.4137 0.4133 0.4128

1059 1.94E-05 5.13E+11 -2.92E-03 -2.84E-03 -2.75E-03 -2.65E-03 0.3773 0.3689 0.3583 0.3453 0.4137 0.4134 0.4130 0.4125

1059 1.94E-05 5.50E+11 -2.85E-03 -2.77E-03 -2.69E-03 -2.58E-03 0.3684 0.3602 0.3499 0.3372 0.4133 0.4130 0.4127 0.4122

1059 1.94E-05 5.88E+11 -2.79E-03 -2.71E-03 -2.63E-03 -2.53E-03 0.3603 0.3523 0.3422 0.3298 0.4130 0.4127 0.4124 0.4119

1059 1.94E-05 6.25E+11 -2.73E-03 -2.66E-03 -2.57E-03 -2.48E-03 0.3528 0.3450 0.3351 0.3230 0.4128 0.4125 0.4121 0.4117

1059 1.94E-05 6.63E+11 -2.68E-03 -2.61E-03 -2.52E-03 -2.43E-03 0.3459 0.3383 0.3286 0.3167 0.4125 0.4122 0.4119 0.4114
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Table 14 – continued from previous page

ρ (kg/m3) t (m) E (Pa)
U3 (m) SE (J) W/Bskin

ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4

1059 1.94E-05 7.00E+11 -2.63E-03 -2.56E-03 -2.48E-03 -2.38E-03 0.3396 0.3320 0.3226 0.3109 0.4123 0.4120 0.4116 0.4112

1059 1.94E-05 7.38E+11 -2.58E-03 -2.52E-03 -2.44E-03 -2.34E-03 0.3337 0.3263 0.3169 0.3055 0.4121 0.4118 0.4114 0.4110

1059 1.94E-05 7.75E+11 -2.54E-03 -2.47E-03 -2.40E-03 -2.30E-03 0.3281 0.3208 0.3117 0.3004 0.4119 0.4116 0.4112 0.4108

1059 1.94E-05 8.13E+11 -2.50E-03 -2.43E-03 -2.36E-03 -2.27E-03 0.3229 0.3158 0.3068 0.2957 0.4117 0.4114 0.4111 0.4107

1059 1.94E-05 8.50E+11 -2.46E-03 -2.40E-03 -2.32E-03 -2.23E-03 0.3181 0.3110 0.3021 0.2912 0.4115 0.4112 0.4109 0.4105

1059 1.94E-05 8.88E+11 -2.43E-03 -2.36E-03 -2.29E-03 -2.20E-03 0.3135 0.3065 0.2978 0.2870 0.4113 0.4111 0.4107 0.4103

1059 1.94E-05 9.25E+11 -2.39E-03 -2.33E-03 -2.26E-03 -2.17E-03 0.3091 0.3023 0.2937 0.2830 0.4111 0.4109 0.4106 0.4102

1059 1.94E-05 9.63E+11 -2.36E-03 -2.30E-03 -2.23E-03 -2.14E-03 0.3050 0.2983 0.2898 0.2793 0.4110 0.4107 0.4104 0.4100

1059 1.94E-05 1.00E+12 -2.33E-03 -2.27E-03 -2.20E-03 -2.12E-03 0.3011 0.2945 0.2861 0.2757 0.4109 0.4106 0.4103 0.4099

1167 1.76E-05 1.00E+11 -5.22E-03 -5.08E-03 -4.92E-03 -4.74E-03 0.6827 0.6672 0.6477 0.6238 0.4252 0.4246 0.4239 0.4230

1167 1.76E-05 1.38E+11 -4.69E-03 -4.57E-03 -4.42E-03 -4.25E-03 0.6113 0.5975 0.5801 0.5588 0.4225 0.4220 0.4213 0.4205

1167 1.76E-05 1.75E+11 -4.32E-03 -4.21E-03 -4.08E-03 -3.92E-03 0.5625 0.5499 0.5339 0.5144 0.4206 0.4202 0.4196 0.4188

1167 1.76E-05 2.13E+11 -4.05E-03 -3.94E-03 -3.82E-03 -3.67E-03 0.5263 0.5144 0.4996 0.4813 0.4193 0.4188 0.4183 0.4176

1167 1.76E-05 2.50E+11 -3.83E-03 -3.73E-03 -3.62E-03 -3.48E-03 0.4978 0.4866 0.4726 0.4553 0.4182 0.4178 0.4172 0.4166

1167 1.76E-05 2.88E+11 -3.66E-03 -3.56E-03 -3.45E-03 -3.32E-03 0.4746 0.4640 0.4506 0.4342 0.4173 0.4169 0.4164 0.4158

1167 1.76E-05 3.25E+11 -3.51E-03 -3.42E-03 -3.31E-03 -3.19E-03 0.4552 0.4450 0.4322 0.4165 0.4166 0.4162 0.4157 0.4151

1167 1.76E-05 3.63E+11 -3.38E-03 -3.30E-03 -3.19E-03 -3.07E-03 0.4386 0.4288 0.4165 0.4013 0.4160 0.4156 0.4151 0.4146

1167 1.76E-05 4.00E+11 -3.27E-03 -3.19E-03 -3.09E-03 -2.97E-03 0.4242 0.4147 0.4028 0.3882 0.4154 0.4151 0.4146 0.4141

1167 1.76E-05 4.38E+11 -3.18E-03 -3.09E-03 -3.00E-03 -2.88E-03 0.4115 0.4023 0.3908 0.3766 0.4149 0.4146 0.4142 0.4136

1167 1.76E-05 4.75E+11 -3.09E-03 -3.01E-03 -2.92E-03 -2.80E-03 0.4000 0.3913 0.3799 0.3661 0.4145 0.4142 0.4138 0.4133

1167 1.76E-05 5.13E+11 -3.01E-03 -2.93E-03 -2.84E-03 -2.73E-03 0.3899 0.3812 0.3703 0.3568 0.4141 0.4138 0.4134 0.4129

1167 1.76E-05 5.50E+11 -2.94E-03 -2.87E-03 -2.78E-03 -2.67E-03 0.3807 0.3722 0.3615 0.3484 0.4138 0.4135 0.4131 0.4126

1167 1.76E-05 5.88E+11 -2.88E-03 -2.80E-03 -2.72E-03 -2.61E-03 0.3723 0.3640 0.3536 0.3408 0.4135 0.4132 0.4128 0.4123

1167 1.76E-05 6.25E+11 -2.82E-03 -2.75E-03 -2.66E-03 -2.56E-03 0.3646 0.3565 0.3463 0.3337 0.4132 0.4129 0.4125 0.4121

1167 1.76E-05 6.63E+11 -2.77E-03 -2.69E-03 -2.61E-03 -2.51E-03 0.3575 0.3495 0.3395 0.3272 0.4129 0.4126 0.4123 0.4118

1167 1.76E-05 7.00E+11 -2.72E-03 -2.64E-03 -2.56E-03 -2.46E-03 0.3509 0.3431 0.3333 0.3212 0.4127 0.4124 0.4120 0.4116

1167 1.76E-05 7.38E+11 -2.67E-03 -2.60E-03 -2.52E-03 -2.42E-03 0.3448 0.3371 0.3275 0.3156 0.4125 0.4122 0.4118 0.4114

1167 1.76E-05 7.75E+11 -2.62E-03 -2.56E-03 -2.47E-03 -2.38E-03 0.3390 0.3315 0.3220 0.3104 0.4123 0.4120 0.4116 0.4112
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Table 14 – continued from previous page

ρ (kg/m3) t (m) E (Pa)
U3 (m) SE (J) W/Bskin

ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4

1167 1.76E-05 8.13E+11 -2.58E-03 -2.52E-03 -2.44E-03 -2.34E-03 0.3337 0.3263 0.3170 0.3055 0.4121 0.4118 0.4114 0.4110

1167 1.76E-05 8.50E+11 -2.54E-03 -2.48E-03 -2.40E-03 -2.31E-03 0.3286 0.3214 0.3122 0.3009 0.4119 0.4116 0.4113 0.4108

1167 1.76E-05 8.88E+11 -2.51E-03 -2.44E-03 -2.37E-03 -2.28E-03 0.3239 0.3167 0.3077 0.2965 0.4117 0.4114 0.4111 0.4107

1167 1.76E-05 9.25E+11 -2.47E-03 -2.41E-03 -2.33E-03 -2.24E-03 0.3194 0.3123 0.3034 0.2924 0.4115 0.4113 0.4109 0.4105

1167 1.76E-05 9.63E+11 -2.44E-03 -2.38E-03 -2.30E-03 -2.21E-03 0.3152 0.3082 0.2994 0.2886 0.4114 0.4111 0.4108 0.4104

1167 1.76E-05 1.00E+12 -2.41E-03 -2.35E-03 -2.27E-03 -2.19E-03 0.3111 0.3043 0.2956 0.2849 0.4112 0.4110 0.4106 0.4103

1275 1.62E-05 1.00E+11 -5.38E-03 -5.24E-03 -5.07E-03 -4.88E-03 0.7042 0.6881 0.6680 0.6433 0.4260 0.4254 0.4247 0.4237

1275 1.62E-05 1.38E+11 -4.83E-03 -4.70E-03 -4.56E-03 -4.38E-03 0.6303 0.6161 0.5981 0.5761 0.4232 0.4227 0.4220 0.4212

1275 1.62E-05 1.75E+11 -4.45E-03 -4.34E-03 -4.20E-03 -4.04E-03 0.5799 0.5669 0.5504 0.5302 0.4213 0.4208 0.4202 0.4194

1275 1.62E-05 2.13E+11 -4.17E-03 -4.06E-03 -3.93E-03 -3.79E-03 0.5425 0.5303 0.5149 0.4961 0.4199 0.4194 0.4188 0.4181

1275 1.62E-05 2.50E+11 -3.95E-03 -3.85E-03 -3.73E-03 -3.58E-03 0.5131 0.5016 0.4871 0.4693 0.4188 0.4183 0.4178 0.4171

1275 1.62E-05 2.88E+11 -3.77E-03 -3.67E-03 -3.55E-03 -3.42E-03 0.4892 0.4781 0.4644 0.4475 0.4179 0.4174 0.4169 0.4163

1275 1.62E-05 3.25E+11 -3.62E-03 -3.52E-03 -3.41E-03 -3.28E-03 0.4691 0.4586 0.4454 0.4292 0.4171 0.4167 0.4162 0.4156

1275 1.62E-05 3.63E+11 -3.49E-03 -3.40E-03 -3.29E-03 -3.16E-03 0.4520 0.4419 0.4292 0.4136 0.4165 0.4161 0.4156 0.4150

1275 1.62E-05 4.00E+11 -3.37E-03 -3.29E-03 -3.18E-03 -3.06E-03 0.4370 0.4274 0.4150 0.4000 0.4159 0.4155 0.4151 0.4145

1275 1.62E-05 4.38E+11 -3.27E-03 -3.19E-03 -3.09E-03 -2.97E-03 0.4240 0.4145 0.4027 0.3880 0.4154 0.4151 0.4146 0.4141

1275 1.62E-05 4.75E+11 -3.18E-03 -3.10E-03 -3.00E-03 -2.89E-03 0.4124 0.4032 0.3916 0.3774 0.4150 0.4146 0.4142 0.4137

1275 1.62E-05 5.13E+11 -3.10E-03 -3.02E-03 -2.93E-03 -2.82E-03 0.4019 0.3929 0.3817 0.3677 0.4146 0.4143 0.4138 0.4133

1275 1.62E-05 5.50E+11 -3.03E-03 -2.95E-03 -2.86E-03 -2.75E-03 0.3922 0.3835 0.3725 0.3590 0.4142 0.4139 0.4135 0.4130

1275 1.62E-05 5.88E+11 -2.97E-03 -2.89E-03 -2.80E-03 -2.69E-03 0.3836 0.3751 0.3643 0.3511 0.4139 0.4136 0.4132 0.4127

1275 1.62E-05 6.25E+11 -2.90E-03 -2.83E-03 -2.74E-03 -2.64E-03 0.3756 0.3673 0.3568 0.3438 0.4136 0.4133 0.4129 0.4124

1275 1.62E-05 6.63E+11 -2.85E-03 -2.77E-03 -2.69E-03 -2.58E-03 0.3683 0.3601 0.3498 0.3371 0.4133 0.4130 0.4127 0.4122

1275 1.62E-05 7.00E+11 -2.80E-03 -2.72E-03 -2.64E-03 -2.54E-03 0.3615 0.3535 0.3434 0.3309 0.4131 0.4128 0.4124 0.4120

1275 1.62E-05 7.38E+11 -2.75E-03 -2.68E-03 -2.59E-03 -2.49E-03 0.3552 0.3473 0.3374 0.3252 0.4129 0.4126 0.4122 0.4117

1275 1.62E-05 7.75E+11 -2.70E-03 -2.63E-03 -2.55E-03 -2.45E-03 0.3493 0.3416 0.3318 0.3198 0.4126 0.4123 0.4120 0.4115

1275 1.62E-05 8.13E+11 -2.66E-03 -2.59E-03 -2.51E-03 -2.41E-03 0.3438 0.3362 0.3266 0.3147 0.4124 0.4121 0.4118 0.4114

1275 1.62E-05 8.50E+11 -2.62E-03 -2.55E-03 -2.47E-03 -2.38E-03 0.3386 0.3311 0.3216 0.3100 0.4122 0.4120 0.4116 0.4112

1275 1.62E-05 8.88E+11 -2.58E-03 -2.52E-03 -2.44E-03 -2.34E-03 0.3337 0.3263 0.3170 0.3055 0.4121 0.4118 0.4114 0.4110
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Table 14 – continued from previous page

ρ (kg/m3) t (m) E (Pa)
U3 (m) SE (J) W/Bskin

ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4

1275 1.62E-05 9.25E+11 -2.55E-03 -2.48E-03 -2.40E-03 -2.31E-03 0.3291 0.3218 0.3126 0.3013 0.4119 0.4116 0.4113 0.4109

1275 1.62E-05 9.63E+11 -2.51E-03 -2.45E-03 -2.37E-03 -2.28E-03 0.3247 0.3175 0.3084 0.2973 0.4117 0.4115 0.4111 0.4107

1275 1.62E-05 1.00E+12 -2.48E-03 -2.42E-03 -2.34E-03 -2.25E-03 0.3206 0.3135 0.3045 0.2935 0.4116 0.4113 0.4110 0.4106

1383 1.49E-05 1.00E+11 -5.53E-03 -5.38E-03 -5.21E-03 -5.02E-03 0.7245 0.7080 0.6872 0.6618 0.4268 0.4262 0.4254 0.4244

1383 1.49E-05 1.38E+11 -4.96E-03 -4.83E-03 -4.68E-03 -4.50E-03 0.6484 0.6337 0.6152 0.5925 0.4239 0.4233 0.4226 0.4218

1383 1.49E-05 1.75E+11 -4.58E-03 -4.46E-03 -4.32E-03 -4.15E-03 0.5964 0.5830 0.5660 0.5453 0.4219 0.4214 0.4208 0.4200

1383 1.49E-05 2.13E+11 -4.29E-03 -4.17E-03 -4.04E-03 -3.89E-03 0.5578 0.5453 0.5295 0.5101 0.4205 0.4200 0.4194 0.4187

1383 1.49E-05 2.50E+11 -4.06E-03 -3.95E-03 -3.83E-03 -3.68E-03 0.5276 0.5157 0.5008 0.4825 0.4193 0.4189 0.4183 0.4176

1383 1.49E-05 2.88E+11 -3.87E-03 -3.77E-03 -3.65E-03 -3.51E-03 0.5029 0.4917 0.4775 0.4600 0.4184 0.4180 0.4174 0.4168

1383 1.49E-05 3.25E+11 -3.72E-03 -3.62E-03 -3.51E-03 -3.37E-03 0.4823 0.4714 0.4579 0.4412 0.4176 0.4172 0.4167 0.4161

1383 1.49E-05 3.63E+11 -3.58E-03 -3.49E-03 -3.38E-03 -3.25E-03 0.4647 0.4543 0.4412 0.4251 0.4169 0.4166 0.4161 0.4155

1383 1.49E-05 4.00E+11 -3.47E-03 -3.38E-03 -3.27E-03 -3.15E-03 0.4494 0.4393 0.4266 0.4111 0.4164 0.4160 0.4155 0.4149

1383 1.49E-05 4.38E+11 -3.36E-03 -3.28E-03 -3.17E-03 -3.05E-03 0.4358 0.4261 0.4139 0.3989 0.4159 0.4155 0.4150 0.4145

1383 1.49E-05 4.75E+11 -3.27E-03 -3.19E-03 -3.09E-03 -2.97E-03 0.4239 0.4144 0.4025 0.3879 0.4154 0.4151 0.4146 0.4141

1383 1.49E-05 5.13E+11 -3.19E-03 -3.11E-03 -3.01E-03 -2.89E-03 0.4131 0.4039 0.3923 0.3781 0.4150 0.4147 0.4142 0.4137

1383 1.49E-05 5.50E+11 -3.12E-03 -3.03E-03 -2.94E-03 -2.83E-03 0.4033 0.3944 0.3830 0.3690 0.4146 0.4143 0.4139 0.4134

1383 1.49E-05 5.88E+11 -3.05E-03 -2.97E-03 -2.87E-03 -2.76E-03 0.3943 0.3855 0.3745 0.3609 0.4143 0.4140 0.4136 0.4131

1383 1.49E-05 6.25E+11 -2.99E-03 -2.91E-03 -2.82E-03 -2.71E-03 0.3861 0.3775 0.3667 0.3534 0.4140 0.4137 0.4133 0.4128

1383 1.49E-05 6.63E+11 -2.93E-03 -2.85E-03 -2.76E-03 -2.66E-03 0.3786 0.3702 0.3596 0.3465 0.4137 0.4134 0.4130 0.4125

1383 1.49E-05 7.00E+11 -2.87E-03 -2.80E-03 -2.71E-03 -2.61E-03 0.3716 0.3633 0.3529 0.3401 0.4135 0.4132 0.4128 0.4123

1383 1.49E-05 7.38E+11 -2.82E-03 -2.75E-03 -2.66E-03 -2.56E-03 0.3651 0.3570 0.3468 0.3342 0.4132 0.4129 0.4125 0.4121

1383 1.49E-05 7.75E+11 -2.78E-03 -2.70E-03 -2.62E-03 -2.52E-03 0.3590 0.3511 0.3410 0.3287 0.4130 0.4127 0.4123 0.4119

1383 1.49E-05 8.13E+11 -2.73E-03 -2.66E-03 -2.58E-03 -2.48E-03 0.3534 0.3455 0.3356 0.3235 0.4128 0.4125 0.4121 0.4117

1383 1.49E-05 8.50E+11 -2.69E-03 -2.62E-03 -2.54E-03 -2.44E-03 0.3480 0.3403 0.3306 0.3186 0.4126 0.4123 0.4119 0.4115

1383 1.49E-05 8.88E+11 -2.65E-03 -2.58E-03 -2.50E-03 -2.41E-03 0.3430 0.3354 0.3258 0.3140 0.4124 0.4121 0.4118 0.4113

1383 1.49E-05 9.25E+11 -2.62E-03 -2.55E-03 -2.47E-03 -2.38E-03 0.3382 0.3307 0.3213 0.3096 0.4122 0.4119 0.4116 0.4112

1383 1.49E-05 9.63E+11 -2.58E-03 -2.52E-03 -2.44E-03 -2.34E-03 0.3337 0.3263 0.3170 0.3055 0.4121 0.4118 0.4114 0.4110

1383 1.49E-05 1.00E+12 -2.55E-03 -2.48E-03 -2.41E-03 -2.31E-03 0.3295 0.3222 0.3129 0.3016 0.4119 0.4116 0.4113 0.4109
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Table 14 – continued from previous page

ρ (kg/m3) t (m) E (Pa)
U3 (m) SE (J) W/Bskin

ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4

1490 1.38E-05 1.00E+11 -5.67E-03 -5.52E-03 -5.35E-03 -5.15E-03 0.7437 0.7267 0.7054 0.6792 0.4276 0.4269 0.4261 0.4251

1490 1.38E-05 1.38E+11 -5.09E-03 -4.96E-03 -4.80E-03 -4.62E-03 0.6653 0.6503 0.6313 0.6080 0.4245 0.4240 0.4233 0.4224

1490 1.38E-05 1.75E+11 -4.69E-03 -4.57E-03 -4.43E-03 -4.26E-03 0.6120 0.5982 0.5808 0.5594 0.4225 0.4220 0.4213 0.4205

1490 1.38E-05 2.13E+11 -4.40E-03 -4.28E-03 -4.15E-03 -3.99E-03 0.5723 0.5594 0.5432 0.5233 0.4210 0.4205 0.4199 0.4192

1490 1.38E-05 2.50E+11 -4.16E-03 -4.05E-03 -3.93E-03 -3.78E-03 0.5412 0.5291 0.5138 0.4950 0.4198 0.4194 0.4188 0.4181

1490 1.38E-05 2.88E+11 -3.97E-03 -3.87E-03 -3.75E-03 -3.60E-03 0.5159 0.5044 0.4898 0.4719 0.4189 0.4184 0.4179 0.4172

1490 1.38E-05 3.25E+11 -3.81E-03 -3.71E-03 -3.59E-03 -3.46E-03 0.4947 0.4837 0.4697 0.4526 0.4181 0.4177 0.4171 0.4165

1490 1.38E-05 3.63E+11 -3.67E-03 -3.58E-03 -3.46E-03 -3.33E-03 0.4766 0.4660 0.4526 0.4361 0.4174 0.4170 0.4165 0.4159

1490 1.38E-05 4.00E+11 -3.55E-03 -3.46E-03 -3.35E-03 -3.22E-03 0.4609 0.4506 0.4376 0.4216 0.4168 0.4164 0.4159 0.4153

1490 1.38E-05 4.38E+11 -3.45E-03 -3.36E-03 -3.25E-03 -3.13E-03 0.4470 0.4370 0.4245 0.4091 0.4163 0.4159 0.4154 0.4149

1490 1.38E-05 4.75E+11 -3.36E-03 -3.27E-03 -3.16E-03 -3.04E-03 0.4348 0.4251 0.4128 0.3978 0.4158 0.4155 0.4150 0.4144

1490 1.38E-05 5.13E+11 -3.27E-03 -3.19E-03 -3.09E-03 -2.97E-03 0.4237 0.4142 0.4023 0.3877 0.4154 0.4150 0.4146 0.4141

1490 1.38E-05 5.50E+11 -3.19E-03 -3.11E-03 -3.01E-03 -2.90E-03 0.4137 0.4044 0.3928 0.3786 0.4150 0.4147 0.4143 0.4137

1490 1.38E-05 5.88E+11 -3.12E-03 -3.04E-03 -2.95E-03 -2.83E-03 0.4045 0.3955 0.3842 0.3701 0.4147 0.4144 0.4139 0.4134

1490 1.38E-05 6.25E+11 -3.06E-03 -2.98E-03 -2.89E-03 -2.78E-03 0.3960 0.3872 0.3761 0.3624 0.4144 0.4140 0.4136 0.4131

1490 1.38E-05 6.63E+11 -3.00E-03 -2.92E-03 -2.83E-03 -2.72E-03 0.3882 0.3796 0.3687 0.3554 0.4141 0.4138 0.4134 0.4129

1490 1.38E-05 7.00E+11 -2.95E-03 -2.87E-03 -2.78E-03 -2.67E-03 0.3811 0.3726 0.3619 0.3488 0.4138 0.4135 0.4131 0.4126

1490 1.38E-05 7.38E+11 -2.90E-03 -2.82E-03 -2.73E-03 -2.63E-03 0.3744 0.3661 0.3556 0.3427 0.4136 0.4133 0.4129 0.4124

1490 1.38E-05 7.75E+11 -2.85E-03 -2.77E-03 -2.69E-03 -2.58E-03 0.3682 0.3600 0.3497 0.3370 0.4133 0.4130 0.4127 0.4122

1490 1.38E-05 8.13E+11 -2.80E-03 -2.73E-03 -2.64E-03 -2.54E-03 0.3624 0.3543 0.3442 0.3317 0.4131 0.4128 0.4124 0.4120

1490 1.38E-05 8.50E+11 -2.76E-03 -2.69E-03 -2.60E-03 -2.51E-03 0.3569 0.3490 0.3390 0.3267 0.4129 0.4126 0.4123 0.4118

1490 1.38E-05 8.88E+11 -2.72E-03 -2.65E-03 -2.57E-03 -2.47E-03 0.3517 0.3439 0.3341 0.3220 0.4127 0.4124 0.4121 0.4116

1490 1.38E-05 9.25E+11 -2.68E-03 -2.61E-03 -2.53E-03 -2.44E-03 0.3468 0.3391 0.3294 0.3175 0.4125 0.4123 0.4119 0.4115

1490 1.38E-05 9.63E+11 -2.65E-03 -2.58E-03 -2.50E-03 -2.40E-03 0.3422 0.3346 0.3251 0.3133 0.4124 0.4121 0.4117 0.4113

1490 1.38E-05 1.00E+12 -2.62E-03 -2.55E-03 -2.47E-03 -2.37E-03 0.3378 0.3303 0.3209 0.3093 0.4122 0.4119 0.4116 0.4112

1598 1.29E-05 1.00E+11 -5.81E-03 -5.65E-03 -5.48E-03 -5.27E-03 0.7623 0.7448 0.7229 0.6960 0.4283 0.4276 0.4268 0.4257

1598 1.29E-05 1.38E+11 -5.21E-03 -5.08E-03 -4.92E-03 -4.73E-03 0.6818 0.6663 0.6468 0.6229 0.4252 0.4246 0.4238 0.4229

1598 1.29E-05 1.75E+11 -4.81E-03 -4.68E-03 -4.53E-03 -4.36E-03 0.6270 0.6128 0.5950 0.5731 0.4231 0.4225 0.4219 0.4210
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Table 14 – continued from previous page

ρ (kg/m3) t (m) E (Pa)
U3 (m) SE (J) W/Bskin

ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4

1598 1.29E-05 2.13E+11 -4.50E-03 -4.38E-03 -4.25E-03 -4.08E-03 0.5863 0.5731 0.5564 0.5360 0.4215 0.4210 0.4204 0.4196

1598 1.29E-05 2.50E+11 -4.26E-03 -4.15E-03 -4.02E-03 -3.87E-03 0.5544 0.5419 0.5262 0.5070 0.4203 0.4199 0.4193 0.4185

1598 1.29E-05 2.88E+11 -4.07E-03 -3.96E-03 -3.83E-03 -3.69E-03 0.5284 0.5166 0.5016 0.4833 0.4193 0.4189 0.4183 0.4176

1598 1.29E-05 3.25E+11 -3.90E-03 -3.80E-03 -3.68E-03 -3.54E-03 0.5067 0.4954 0.4811 0.4635 0.4185 0.4181 0.4176 0.4169

1598 1.29E-05 3.63E+11 -3.76E-03 -3.66E-03 -3.55E-03 -3.41E-03 0.4882 0.4771 0.4635 0.4466 0.4178 0.4174 0.4169 0.4163

1598 1.29E-05 4.00E+11 -3.64E-03 -3.54E-03 -3.43E-03 -3.30E-03 0.4720 0.4615 0.4482 0.4319 0.4172 0.4168 0.4163 0.4157

1598 1.29E-05 4.38E+11 -3.53E-03 -3.44E-03 -3.33E-03 -3.20E-03 0.4579 0.4476 0.4347 0.4189 0.4167 0.4163 0.4158 0.4152

1598 1.29E-05 4.75E+11 -3.44E-03 -3.35E-03 -3.24E-03 -3.12E-03 0.4452 0.4353 0.4228 0.4074 0.4162 0.4158 0.4154 0.4148

1598 1.29E-05 5.13E+11 -3.35E-03 -3.26E-03 -3.16E-03 -3.04E-03 0.4339 0.4242 0.4120 0.3970 0.4158 0.4154 0.4150 0.4144

1598 1.29E-05 5.50E+11 -3.27E-03 -3.18E-03 -3.08E-03 -2.97E-03 0.4236 0.4141 0.4023 0.3876 0.4154 0.4150 0.4146 0.4141

1598 1.29E-05 5.88E+11 -3.20E-03 -3.12E-03 -3.02E-03 -2.90E-03 0.4142 0.4050 0.3934 0.3791 0.4150 0.4147 0.4143 0.4137

1598 1.29E-05 6.25E+11 -3.13E-03 -3.05E-03 -2.96E-03 -2.84E-03 0.4056 0.3966 0.3852 0.3712 0.4147 0.4144 0.4140 0.4134

1598 1.29E-05 6.63E+11 -3.07E-03 -2.99E-03 -2.90E-03 -2.79E-03 0.3976 0.3887 0.3776 0.3639 0.4144 0.4141 0.4137 0.4132

1598 1.29E-05 7.00E+11 -3.02E-03 -2.94E-03 -2.84E-03 -2.74E-03 0.3902 0.3815 0.3706 0.3571 0.4142 0.4138 0.4134 0.4129

1598 1.29E-05 7.38E+11 -2.96E-03 -2.89E-03 -2.80E-03 -2.69E-03 0.3834 0.3749 0.3641 0.3509 0.4139 0.4136 0.4132 0.4127

1598 1.29E-05 7.75E+11 -2.92E-03 -2.84E-03 -2.75E-03 -2.64E-03 0.3770 0.3686 0.3581 0.3451 0.4137 0.4134 0.4130 0.4125

1598 1.29E-05 8.13E+11 -2.87E-03 -2.79E-03 -2.71E-03 -2.60E-03 0.3710 0.3628 0.3524 0.3396 0.4134 0.4131 0.4128 0.4123

1598 1.29E-05 8.50E+11 -2.83E-03 -2.75E-03 -2.67E-03 -2.56E-03 0.3654 0.3573 0.3471 0.3345 0.4132 0.4129 0.4126 0.4121

1598 1.29E-05 8.88E+11 -2.79E-03 -2.71E-03 -2.63E-03 -2.53E-03 0.3601 0.3521 0.3421 0.3297 0.4130 0.4127 0.4124 0.4119

1598 1.29E-05 9.25E+11 -2.75E-03 -2.68E-03 -2.59E-03 -2.49E-03 0.3551 0.3472 0.3373 0.3251 0.4129 0.4126 0.4122 0.4117

1598 1.29E-05 9.63E+11 -2.71E-03 -2.64E-03 -2.56E-03 -2.46E-03 0.3504 0.3426 0.3328 0.3208 0.4127 0.4124 0.4120 0.4116

1598 1.29E-05 1.00E+12 -2.68E-03 -2.61E-03 -2.52E-03 -2.43E-03 0.3459 0.3382 0.3286 0.3167 0.4125 0.4122 0.4119 0.4114

1706 1.21E-05 1.00E+11 -5.94E-03 -5.78E-03 -5.60E-03 -5.39E-03 0.7801 0.7622 0.7397 0.7122 0.4290 0.4283 0.4274 0.4264

1706 1.21E-05 1.38E+11 -5.33E-03 -5.19E-03 -5.03E-03 -4.84E-03 0.6975 0.6816 0.6617 0.6372 0.4258 0.4252 0.4244 0.4235

1706 1.21E-05 1.75E+11 -4.91E-03 -4.78E-03 -4.63E-03 -4.46E-03 0.6414 0.6268 0.6086 0.5862 0.4236 0.4231 0.4224 0.4215

1706 1.21E-05 2.13E+11 -4.60E-03 -4.48E-03 -4.34E-03 -4.18E-03 0.5997 0.5861 0.5691 0.5482 0.4220 0.4215 0.4209 0.4201

1706 1.21E-05 2.50E+11 -4.36E-03 -4.24E-03 -4.11E-03 -3.95E-03 0.5670 0.5542 0.5382 0.5185 0.4208 0.4203 0.4197 0.4190

1706 1.21E-05 2.88E+11 -4.16E-03 -4.05E-03 -3.92E-03 -3.77E-03 0.5404 0.5283 0.5130 0.4942 0.4198 0.4193 0.4188 0.4181
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Table 14 – continued from previous page

ρ (kg/m3) t (m) E (Pa)
U3 (m) SE (J) W/Bskin

ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4

1706 1.21E-05 3.25E+11 -3.99E-03 -3.88E-03 -3.76E-03 -3.62E-03 0.5182 0.5066 0.4919 0.4740 0.4190 0.4185 0.4180 0.4173

1706 1.21E-05 3.63E+11 -3.84E-03 -3.74E-03 -3.63E-03 -3.49E-03 0.4992 0.4880 0.4739 0.4566 0.4182 0.4178 0.4173 0.4166

1706 1.21E-05 4.00E+11 -3.72E-03 -3.62E-03 -3.51E-03 -3.37E-03 0.4827 0.4718 0.4583 0.4416 0.4176 0.4172 0.4167 0.4161

1706 1.21E-05 4.38E+11 -3.61E-03 -3.51E-03 -3.40E-03 -3.27E-03 0.4682 0.4577 0.4445 0.4283 0.4171 0.4167 0.4162 0.4156

1706 1.21E-05 4.75E+11 -3.51E-03 -3.42E-03 -3.31E-03 -3.19E-03 0.4552 0.4451 0.4323 0.4165 0.4166 0.4162 0.4157 0.4151

1706 1.21E-05 5.13E+11 -3.42E-03 -3.33E-03 -3.23E-03 -3.11E-03 0.4436 0.4337 0.4212 0.4059 0.4161 0.4158 0.4153 0.4147

1706 1.21E-05 5.50E+11 -3.34E-03 -3.26E-03 -3.15E-03 -3.03E-03 0.4331 0.4234 0.4113 0.3963 0.4158 0.4154 0.4149 0.4144

1706 1.21E-05 5.88E+11 -3.27E-03 -3.18E-03 -3.08E-03 -2.97E-03 0.4235 0.4141 0.4022 0.3876 0.4154 0.4150 0.4146 0.4141

1706 1.21E-05 6.25E+11 -3.20E-03 -3.12E-03 -3.02E-03 -2.91E-03 0.4147 0.4055 0.3938 0.3795 0.4151 0.4147 0.4143 0.4138

1706 1.21E-05 6.63E+11 -3.14E-03 -3.06E-03 -2.96E-03 -2.85E-03 0.4066 0.3975 0.3861 0.3721 0.4148 0.4144 0.4140 0.4135

1706 1.21E-05 7.00E+11 -3.08E-03 -3.00E-03 -2.91E-03 -2.80E-03 0.3989 0.3901 0.3789 0.3651 0.4145 0.4142 0.4137 0.4132

1706 1.21E-05 7.38E+11 -3.03E-03 -2.95E-03 -2.86E-03 -2.75E-03 0.3920 0.3832 0.3723 0.3587 0.4142 0.4139 0.4135 0.4130

1706 1.21E-05 7.75E+11 -2.98E-03 -2.90E-03 -2.81E-03 -2.70E-03 0.3854 0.3769 0.3661 0.3528 0.4140 0.4137 0.4133 0.4128

1706 1.21E-05 8.13E+11 -2.93E-03 -2.86E-03 -2.77E-03 -2.66E-03 0.3793 0.3709 0.3603 0.3472 0.4138 0.4134 0.4130 0.4126

1706 1.21E-05 8.50E+11 -2.89E-03 -2.81E-03 -2.72E-03 -2.62E-03 0.3736 0.3653 0.3548 0.3420 0.4135 0.4132 0.4128 0.4124

1706 1.21E-05 8.88E+11 -2.85E-03 -2.77E-03 -2.69E-03 -2.58E-03 0.3682 0.3600 0.3497 0.3370 0.4133 0.4130 0.4127 0.4122

1706 1.21E-05 9.25E+11 -2.81E-03 -2.73E-03 -2.65E-03 -2.55E-03 0.3631 0.3550 0.3448 0.3323 0.4131 0.4128 0.4125 0.4120

1706 1.21E-05 9.63E+11 -2.77E-03 -2.70E-03 -2.61E-03 -2.51E-03 0.3582 0.3503 0.3402 0.3279 0.4130 0.4127 0.4123 0.4118

1706 1.21E-05 1.00E+12 -2.74E-03 -2.66E-03 -2.58E-03 -2.48E-03 0.3536 0.3458 0.3359 0.3237 0.4128 0.4125 0.4121 0.4117

1814 1.14E-05 1.00E+11 -6.06E-03 -5.90E-03 -5.72E-03 -5.50E-03 0.7972 0.7789 0.7559 0.7277 0.4296 0.4289 0.4280 0.4270

1814 1.14E-05 1.38E+11 -5.44E-03 -5.30E-03 -5.13E-03 -4.94E-03 0.7126 0.6964 0.6760 0.6510 0.4264 0.4257 0.4250 0.4240

1814 1.14E-05 1.75E+11 -5.02E-03 -4.88E-03 -4.73E-03 -4.55E-03 0.6552 0.6403 0.6217 0.5987 0.4242 0.4236 0.4229 0.4220

1814 1.14E-05 2.13E+11 -4.70E-03 -4.57E-03 -4.43E-03 -4.26E-03 0.6125 0.5987 0.5813 0.5599 0.4225 0.4220 0.4213 0.4205

1814 1.14E-05 2.50E+11 -4.45E-03 -4.33E-03 -4.19E-03 -4.04E-03 0.5791 0.5661 0.5497 0.5295 0.4213 0.4208 0.4201 0.4194

1814 1.14E-05 2.88E+11 -4.24E-03 -4.13E-03 -4.00E-03 -3.85E-03 0.5519 0.5395 0.5239 0.5047 0.4202 0.4198 0.4192 0.4184

1814 1.14E-05 3.25E+11 -4.07E-03 -3.96E-03 -3.84E-03 -3.69E-03 0.5292 0.5173 0.5024 0.4840 0.4194 0.4189 0.4184 0.4177

1814 1.14E-05 3.63E+11 -3.92E-03 -3.82E-03 -3.70E-03 -3.56E-03 0.5098 0.4983 0.4840 0.4663 0.4186 0.4182 0.4177 0.4170

1814 1.14E-05 4.00E+11 -3.80E-03 -3.70E-03 -3.58E-03 -3.45E-03 0.4929 0.4817 0.4680 0.4509 0.4180 0.4176 0.4171 0.4164
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Table 14 – continued from previous page

ρ (kg/m3) t (m) E (Pa)
U3 (m) SE (J) W/Bskin

ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4

1814 1.14E-05 4.38E+11 -3.68E-03 -3.59E-03 -3.48E-03 -3.34E-03 0.4781 0.4674 0.4539 0.4374 0.4174 0.4170 0.4165 0.4159

1814 1.14E-05 4.75E+11 -3.58E-03 -3.49E-03 -3.38E-03 -3.25E-03 0.4648 0.4545 0.4414 0.4253 0.4169 0.4166 0.4161 0.4155

1814 1.14E-05 5.13E+11 -3.49E-03 -3.40E-03 -3.30E-03 -3.17E-03 0.4530 0.4429 0.4301 0.4145 0.4165 0.4161 0.4156 0.4151

1814 1.14E-05 5.50E+11 -3.41E-03 -3.32E-03 -3.22E-03 -3.10E-03 0.4422 0.4324 0.4199 0.4046 0.4161 0.4157 0.4153 0.4147

1814 1.14E-05 5.88E+11 -3.34E-03 -3.25E-03 -3.15E-03 -3.03E-03 0.4324 0.4228 0.4106 0.3957 0.4157 0.4154 0.4149 0.4144

1814 1.14E-05 6.25E+11 -3.27E-03 -3.18E-03 -3.08E-03 -2.97E-03 0.4234 0.4140 0.4021 0.3875 0.4154 0.4150 0.4146 0.4141

1814 1.14E-05 6.63E+11 -3.21E-03 -3.12E-03 -3.02E-03 -2.91E-03 0.4152 0.4059 0.3942 0.3799 0.4151 0.4147 0.4143 0.4138

1814 1.14E-05 7.00E+11 -3.15E-03 -3.06E-03 -2.97E-03 -2.86E-03 0.4075 0.3984 0.3870 0.3729 0.4148 0.4145 0.4140 0.4135

1814 1.14E-05 7.38E+11 -3.09E-03 -3.01E-03 -2.92E-03 -2.81E-03 0.4002 0.3914 0.3801 0.3663 0.4145 0.4142 0.4138 0.4133

1814 1.14E-05 7.75E+11 -3.04E-03 -2.96E-03 -2.87E-03 -2.76E-03 0.3935 0.3848 0.3737 0.3602 0.4143 0.4140 0.4135 0.4130

1814 1.14E-05 8.13E+11 -2.99E-03 -2.92E-03 -2.82E-03 -2.72E-03 0.3873 0.3787 0.3678 0.3545 0.4140 0.4137 0.4133 0.4128

1814 1.14E-05 8.50E+11 -2.95E-03 -2.87E-03 -2.78E-03 -2.68E-03 0.3814 0.3729 0.3623 0.3491 0.4138 0.4135 0.4131 0.4126

1814 1.14E-05 8.88E+11 -2.91E-03 -2.83E-03 -2.74E-03 -2.64E-03 0.3759 0.3675 0.3570 0.3441 0.4136 0.4133 0.4129 0.4124

1814 1.14E-05 9.25E+11 -2.87E-03 -2.79E-03 -2.70E-03 -2.60E-03 0.3707 0.3624 0.3521 0.3393 0.4134 0.4131 0.4127 0.4123

1814 1.14E-05 9.63E+11 -2.83E-03 -2.75E-03 -2.67E-03 -2.57E-03 0.3657 0.3576 0.3474 0.3348 0.4132 0.4129 0.4126 0.4121

1814 1.14E-05 1.00E+12 -2.79E-03 -2.72E-03 -2.63E-03 -2.53E-03 0.3610 0.3530 0.3429 0.3305 0.4131 0.4128 0.4124 0.4119

1922 1.07E-05 1.00E+11 -6.18E-03 -6.02E-03 -5.83E-03 -5.61E-03 0.8137 0.7950 0.7715 0.7427 0.4303 0.4295 0.4286 0.4275

1922 1.07E-05 1.38E+11 -5.55E-03 -5.40E-03 -5.23E-03 -5.04E-03 0.7272 0.7106 0.6898 0.6642 0.4269 0.4263 0.4255 0.4245

1922 1.07E-05 1.75E+11 -5.11E-03 -4.98E-03 -4.82E-03 -4.64E-03 0.6685 0.6533 0.6342 0.6108 0.4247 0.4241 0.4234 0.4225

1922 1.07E-05 2.13E+11 -4.79E-03 -4.66E-03 -4.52E-03 -4.35E-03 0.6249 0.6107 0.5930 0.5712 0.4230 0.4225 0.4218 0.4210

1922 1.07E-05 2.50E+11 -4.53E-03 -4.42E-03 -4.28E-03 -4.11E-03 0.5908 0.5775 0.5607 0.5401 0.4217 0.4212 0.4206 0.4198

1922 1.07E-05 2.88E+11 -4.33E-03 -4.21E-03 -4.08E-03 -3.93E-03 0.5630 0.5503 0.5344 0.5148 0.4207 0.4202 0.4196 0.4188

1922 1.07E-05 3.25E+11 -4.15E-03 -4.04E-03 -3.92E-03 -3.77E-03 0.5398 0.5277 0.5124 0.4937 0.4198 0.4193 0.4187 0.4180

1922 1.07E-05 3.63E+11 -4.00E-03 -3.90E-03 -3.77E-03 -3.63E-03 0.5200 0.5083 0.4936 0.4756 0.4190 0.4186 0.4180 0.4174

1922 1.07E-05 4.00E+11 -3.87E-03 -3.77E-03 -3.65E-03 -3.51E-03 0.5027 0.4915 0.4773 0.4599 0.4184 0.4179 0.4174 0.4168

1922 1.07E-05 4.38E+11 -3.76E-03 -3.66E-03 -3.54E-03 -3.41E-03 0.4876 0.4767 0.4629 0.4460 0.4178 0.4174 0.4169 0.4162

1922 1.07E-05 4.75E+11 -3.65E-03 -3.56E-03 -3.45E-03 -3.32E-03 0.4741 0.4635 0.4501 0.4337 0.4173 0.4169 0.4164 0.4158

1922 1.07E-05 5.13E+11 -3.56E-03 -3.47E-03 -3.36E-03 -3.23E-03 0.4620 0.4517 0.4387 0.4227 0.4168 0.4165 0.4160 0.4154
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Table 14 – continued from previous page

ρ (kg/m3) t (m) E (Pa)
U3 (m) SE (J) W/Bskin

ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4

1922 1.07E-05 5.50E+11 -3.48E-03 -3.39E-03 -3.28E-03 -3.16E-03 0.4510 0.4409 0.4283 0.4127 0.4164 0.4160 0.4156 0.4150

1922 1.07E-05 5.88E+11 -3.40E-03 -3.31E-03 -3.21E-03 -3.09E-03 0.4410 0.4312 0.4188 0.4035 0.4161 0.4157 0.4152 0.4147

1922 1.07E-05 6.25E+11 -3.33E-03 -3.25E-03 -3.14E-03 -3.02E-03 0.4318 0.4222 0.4101 0.3952 0.4157 0.4153 0.4149 0.4143

1922 1.07E-05 6.63E+11 -3.27E-03 -3.18E-03 -3.08E-03 -2.97E-03 0.4234 0.4139 0.4021 0.3874 0.4154 0.4150 0.4146 0.4141

1922 1.07E-05 7.00E+11 -3.21E-03 -3.12E-03 -3.03E-03 -2.91E-03 0.4155 0.4063 0.3946 0.3803 0.4151 0.4148 0.4143 0.4138

1922 1.07E-05 7.38E+11 -3.15E-03 -3.07E-03 -2.97E-03 -2.86E-03 0.4083 0.3992 0.3877 0.3736 0.4148 0.4145 0.4141 0.4135

1922 1.07E-05 7.75E+11 -3.10E-03 -3.02E-03 -2.92E-03 -2.81E-03 0.4014 0.3925 0.3813 0.3673 0.4146 0.4142 0.4138 0.4133

1922 1.07E-05 8.13E+11 -3.05E-03 -2.97E-03 -2.88E-03 -2.77E-03 0.3949 0.3862 0.3751 0.3615 0.4143 0.4140 0.4136 0.4131

1922 1.07E-05 8.50E+11 -3.01E-03 -2.93E-03 -2.84E-03 -2.73E-03 0.3890 0.3803 0.3694 0.3560 0.4141 0.4138 0.4134 0.4129

1922 1.07E-05 8.88E+11 -2.96E-03 -2.89E-03 -2.79E-03 -2.69E-03 0.3833 0.3748 0.3641 0.3508 0.4139 0.4136 0.4132 0.4127

1922 1.07E-05 9.25E+11 -2.92E-03 -2.85E-03 -2.76E-03 -2.65E-03 0.3780 0.3696 0.3590 0.3460 0.4137 0.4134 0.4130 0.4125

1922 1.07E-05 9.63E+11 -2.88E-03 -2.81E-03 -2.72E-03 -2.62E-03 0.3729 0.3647 0.3542 0.3414 0.4135 0.4132 0.4128 0.4123

1922 1.07E-05 1.00E+12 -2.85E-03 -2.77E-03 -2.69E-03 -2.58E-03 0.3682 0.3600 0.3497 0.3370 0.4133 0.4130 0.4126 0.4122

2030 1.01E-05 1.00E+11 -6.30E-03 -6.13E-03 -5.94E-03 -5.72E-03 0.8296 0.8105 0.7866 0.7572 0.4309 0.4301 0.4292 0.4281

2030 1.01E-05 1.38E+11 -5.65E-03 -5.50E-03 -5.33E-03 -5.13E-03 0.7413 0.7244 0.7031 0.6770 0.4275 0.4268 0.4260 0.4250

2030 1.01E-05 1.75E+11 -5.21E-03 -5.07E-03 -4.91E-03 -4.73E-03 0.6813 0.6658 0.6464 0.6225 0.4252 0.4246 0.4238 0.4229

2030 1.01E-05 2.13E+11 -4.88E-03 -4.75E-03 -4.60E-03 -4.43E-03 0.6368 0.6224 0.6043 0.5821 0.4235 0.4229 0.4222 0.4214

2030 1.01E-05 2.50E+11 -4.62E-03 -4.50E-03 -4.36E-03 -4.19E-03 0.6020 0.5884 0.5713 0.5504 0.4221 0.4216 0.4210 0.4202

2030 1.01E-05 2.88E+11 -4.41E-03 -4.29E-03 -4.16E-03 -4.00E-03 0.5737 0.5608 0.5445 0.5246 0.4211 0.4206 0.4200 0.4192

2030 1.01E-05 3.25E+11 -4.23E-03 -4.12E-03 -3.99E-03 -3.84E-03 0.5500 0.5377 0.5221 0.5030 0.4202 0.4197 0.4191 0.4184

2030 1.01E-05 3.63E+11 -4.08E-03 -3.97E-03 -3.84E-03 -3.70E-03 0.5298 0.5179 0.5029 0.4845 0.4194 0.4189 0.4184 0.4177

2030 1.01E-05 4.00E+11 -3.94E-03 -3.84E-03 -3.72E-03 -3.58E-03 0.5122 0.5007 0.4863 0.4685 0.4187 0.4183 0.4178 0.4171

2030 1.01E-05 4.38E+11 -3.83E-03 -3.73E-03 -3.61E-03 -3.47E-03 0.4968 0.4856 0.4716 0.4544 0.4181 0.4177 0.4172 0.4166

2030 1.01E-05 4.75E+11 -3.72E-03 -3.62E-03 -3.51E-03 -3.38E-03 0.4830 0.4722 0.4586 0.4419 0.4176 0.4172 0.4167 0.4161

2030 1.01E-05 5.13E+11 -3.63E-03 -3.53E-03 -3.42E-03 -3.29E-03 0.4707 0.4601 0.4469 0.4306 0.4172 0.4168 0.4163 0.4157

2030 1.01E-05 5.50E+11 -3.54E-03 -3.45E-03 -3.34E-03 -3.22E-03 0.4595 0.4492 0.4363 0.4204 0.4167 0.4164 0.4159 0.4153

2030 1.01E-05 5.88E+11 -3.47E-03 -3.38E-03 -3.27E-03 -3.14E-03 0.4493 0.4393 0.4266 0.4111 0.4164 0.4160 0.4155 0.4149

2030 1.01E-05 6.25E+11 -3.39E-03 -3.31E-03 -3.20E-03 -3.08E-03 0.4399 0.4301 0.4178 0.4025 0.4160 0.4156 0.4152 0.4146
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Table 14 – continued from previous page

ρ (kg/m3) t (m) E (Pa)
U3 (m) SE (J) W/Bskin

ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4

2030 1.01E-05 6.63E+11 -3.33E-03 -3.24E-03 -3.14E-03 -3.02E-03 0.4313 0.4217 0.4096 0.3947 0.4157 0.4153 0.4149 0.4143

2030 1.01E-05 7.00E+11 -3.27E-03 -3.18E-03 -3.08E-03 -2.97E-03 0.4233 0.4139 0.4020 0.3874 0.4154 0.4150 0.4146 0.4140

2030 1.01E-05 7.38E+11 -3.21E-03 -3.13E-03 -3.03E-03 -2.91E-03 0.4159 0.4066 0.3950 0.3806 0.4151 0.4148 0.4143 0.4138

2030 1.01E-05 7.75E+11 -3.16E-03 -3.08E-03 -2.98E-03 -2.87E-03 0.4090 0.3998 0.3884 0.3743 0.4149 0.4145 0.4141 0.4136

2030 1.01E-05 8.13E+11 -3.11E-03 -3.03E-03 -2.93E-03 -2.82E-03 0.4025 0.3935 0.3822 0.3682 0.4146 0.4143 0.4139 0.4133

2030 1.01E-05 8.50E+11 -3.06E-03 -2.98E-03 -2.89E-03 -2.78E-03 0.3962 0.3874 0.3763 0.3626 0.4144 0.4141 0.4136 0.4131

2030 1.01E-05 8.88E+11 -3.02E-03 -2.94E-03 -2.85E-03 -2.74E-03 0.3905 0.3818 0.3708 0.3574 0.4142 0.4138 0.4134 0.4129

2030 1.01E-05 9.25E+11 -2.98E-03 -2.90E-03 -2.81E-03 -2.70E-03 0.3850 0.3765 0.3657 0.3524 0.4140 0.4136 0.4132 0.4128

2030 1.01E-05 9.63E+11 -2.94E-03 -2.86E-03 -2.77E-03 -2.67E-03 0.3799 0.3715 0.3608 0.3477 0.4138 0.4135 0.4131 0.4126

2030 1.01E-05 1.00E+12 -2.90E-03 -2.82E-03 -2.74E-03 -2.63E-03 0.3750 0.3667 0.3562 0.3433 0.4136 0.4133 0.4129 0.4124

2137 9.64E-06 1.00E+11 -6.41E-03 -6.24E-03 -6.04E-03 -5.82E-03 0.8450 0.8255 0.8010 0.7711 0.4315 0.4307 0.4298 0.4286

2137 9.64E-06 1.38E+11 -5.75E-03 -5.60E-03 -5.42E-03 -5.22E-03 0.7549 0.7376 0.7159 0.6893 0.4280 0.4273 0.4265 0.4255

2137 9.64E-06 1.75E+11 -5.30E-03 -5.16E-03 -5.00E-03 -4.81E-03 0.6936 0.6778 0.6580 0.6337 0.4256 0.4250 0.4243 0.4233

2137 9.64E-06 2.13E+11 -4.96E-03 -4.83E-03 -4.68E-03 -4.50E-03 0.6483 0.6336 0.6151 0.5925 0.4239 0.4233 0.4226 0.4218

2137 9.64E-06 2.50E+11 -4.70E-03 -4.58E-03 -4.43E-03 -4.26E-03 0.6128 0.5990 0.5816 0.5602 0.4225 0.4220 0.4214 0.4205

2137 9.64E-06 2.88E+11 -4.48E-03 -4.37E-03 -4.23E-03 -4.07E-03 0.5839 0.5708 0.5542 0.5339 0.4214 0.4209 0.4203 0.4196

2137 9.64E-06 3.25E+11 -4.30E-03 -4.19E-03 -4.06E-03 -3.90E-03 0.5598 0.5472 0.5314 0.5119 0.4205 0.4201 0.4195 0.4187

2137 9.64E-06 3.63E+11 -4.15E-03 -4.04E-03 -3.91E-03 -3.76E-03 0.5392 0.5271 0.5118 0.4931 0.4197 0.4193 0.4187 0.4180

2137 9.64E-06 4.00E+11 -4.01E-03 -3.91E-03 -3.78E-03 -3.64E-03 0.5213 0.5096 0.4949 0.4768 0.4191 0.4186 0.4181 0.4174

2137 9.64E-06 4.38E+11 -3.89E-03 -3.79E-03 -3.67E-03 -3.53E-03 0.5056 0.4942 0.4800 0.4625 0.4185 0.4181 0.4175 0.4169

2137 9.64E-06 4.75E+11 -3.79E-03 -3.69E-03 -3.57E-03 -3.44E-03 0.4916 0.4806 0.4667 0.4497 0.4180 0.4175 0.4170 0.4164

2137 9.64E-06 5.13E+11 -3.69E-03 -3.59E-03 -3.48E-03 -3.35E-03 0.4790 0.4683 0.4548 0.4382 0.4175 0.4171 0.4166 0.4159

2137 9.64E-06 5.50E+11 -3.61E-03 -3.51E-03 -3.40E-03 -3.27E-03 0.4676 0.4571 0.4440 0.4278 0.4170 0.4167 0.4162 0.4156

2137 9.64E-06 5.88E+11 -3.53E-03 -3.43E-03 -3.33E-03 -3.20E-03 0.4572 0.4470 0.4341 0.4183 0.4167 0.4163 0.4158 0.4152

2137 9.64E-06 6.25E+11 -3.45E-03 -3.36E-03 -3.26E-03 -3.13E-03 0.4477 0.4377 0.4251 0.4096 0.4163 0.4159 0.4155 0.4149

2137 9.64E-06 6.63E+11 -3.39E-03 -3.30E-03 -3.19E-03 -3.07E-03 0.4389 0.4291 0.4168 0.4016 0.4160 0.4156 0.4151 0.4146

2137 9.64E-06 7.00E+11 -3.33E-03 -3.24E-03 -3.14E-03 -3.02E-03 0.4308 0.4212 0.4091 0.3942 0.4157 0.4153 0.4149 0.4143

2137 9.64E-06 7.38E+11 -3.27E-03 -3.18E-03 -3.08E-03 -2.96E-03 0.4232 0.4138 0.4019 0.3873 0.4154 0.4150 0.4146 0.4140

Continued on next page
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Table 14 – continued from previous page

ρ (kg/m3) t (m) E (Pa)
U3 (m) SE (J) W/Bskin

ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4

2137 9.64E-06 7.75E+11 -3.21E-03 -3.13E-03 -3.03E-03 -2.92E-03 0.4161 0.4069 0.3952 0.3808 0.4151 0.4148 0.4143 0.4138

2137 9.64E-06 8.13E+11 -3.16E-03 -3.08E-03 -2.98E-03 -2.87E-03 0.4095 0.4004 0.3889 0.3748 0.4149 0.4145 0.4141 0.4136

2137 9.64E-06 8.50E+11 -3.12E-03 -3.03E-03 -2.94E-03 -2.83E-03 0.4033 0.3943 0.3830 0.3690 0.4146 0.4143 0.4139 0.4134

2137 9.64E-06 8.88E+11 -3.07E-03 -2.99E-03 -2.90E-03 -2.79E-03 0.3973 0.3885 0.3773 0.3636 0.4144 0.4141 0.4137 0.4132

2137 9.64E-06 9.25E+11 -3.03E-03 -2.95E-03 -2.86E-03 -2.75E-03 0.3918 0.3831 0.3721 0.3586 0.4142 0.4139 0.4135 0.4130

2137 9.64E-06 9.63E+11 -2.99E-03 -2.91E-03 -2.82E-03 -2.71E-03 0.3866 0.3780 0.3671 0.3538 0.4140 0.4137 0.4133 0.4128

2137 9.64E-06 1.00E+12 -2.95E-03 -2.87E-03 -2.78E-03 -2.68E-03 0.3816 0.3731 0.3624 0.3493 0.4138 0.4135 0.4131 0.4126

2245 9.17E-06 1.00E+11 -6.52E-03 -6.35E-03 -6.15E-03 -5.91E-03 0.8600 0.8401 0.8152 0.7847 0.4320 0.4313 0.4303 0.4291

2245 9.17E-06 1.38E+11 -5.85E-03 -5.70E-03 -5.52E-03 -5.31E-03 0.7681 0.7505 0.7284 0.7013 0.4285 0.4278 0.4270 0.4259

2245 9.17E-06 1.75E+11 -5.39E-03 -5.25E-03 -5.08E-03 -4.89E-03 0.7057 0.6896 0.6694 0.6447 0.4261 0.4255 0.4247 0.4238

2245 9.17E-06 2.13E+11 -5.05E-03 -4.92E-03 -4.76E-03 -4.58E-03 0.6595 0.6445 0.6257 0.6027 0.4243 0.4238 0.4230 0.4222

2245 9.17E-06 2.50E+11 -4.78E-03 -4.65E-03 -4.51E-03 -4.34E-03 0.6234 0.6093 0.5915 0.5698 0.4229 0.4224 0.4217 0.4209

2245 9.17E-06 2.88E+11 -4.56E-03 -4.44E-03 -4.30E-03 -4.14E-03 0.5940 0.5806 0.5637 0.5430 0.4218 0.4213 0.4207 0.4199

2245 9.17E-06 3.25E+11 -4.37E-03 -4.26E-03 -4.13E-03 -3.97E-03 0.5694 0.5566 0.5404 0.5206 0.4209 0.4204 0.4198 0.4191

2245 9.17E-06 3.63E+11 -4.22E-03 -4.11E-03 -3.98E-03 -3.83E-03 0.5484 0.5361 0.5206 0.5015 0.4201 0.4196 0.4190 0.4183

2245 9.17E-06 4.00E+11 -4.08E-03 -3.97E-03 -3.85E-03 -3.70E-03 0.5302 0.5183 0.5033 0.4849 0.4194 0.4190 0.4184 0.4177

2245 9.17E-06 4.38E+11 -3.96E-03 -3.85E-03 -3.73E-03 -3.59E-03 0.5142 0.5026 0.4881 0.4703 0.4188 0.4184 0.4178 0.4172

2245 9.17E-06 4.75E+11 -3.85E-03 -3.75E-03 -3.63E-03 -3.49E-03 0.4999 0.4887 0.4746 0.4573 0.4183 0.4178 0.4173 0.4167

2245 9.17E-06 5.13E+11 -3.75E-03 -3.65E-03 -3.54E-03 -3.41E-03 0.4871 0.4762 0.4625 0.4456 0.4178 0.4174 0.4169 0.4162

2245 9.17E-06 5.50E+11 -3.67E-03 -3.57E-03 -3.46E-03 -3.33E-03 0.4755 0.4649 0.4515 0.4350 0.4173 0.4169 0.4164 0.4158

2245 9.17E-06 5.88E+11 -3.59E-03 -3.49E-03 -3.38E-03 -3.25E-03 0.4649 0.4546 0.4415 0.4254 0.4169 0.4166 0.4161 0.4155

2245 9.17E-06 6.25E+11 -3.51E-03 -3.42E-03 -3.31E-03 -3.19E-03 0.4553 0.4451 0.4323 0.4165 0.4166 0.4162 0.4157 0.4151

2245 9.17E-06 6.63E+11 -3.44E-03 -3.35E-03 -3.25E-03 -3.12E-03 0.4463 0.4364 0.4238 0.4084 0.4162 0.4159 0.4154 0.4148

2245 9.17E-06 7.00E+11 -3.38E-03 -3.29E-03 -3.19E-03 -3.07E-03 0.4380 0.4283 0.4160 0.4008 0.4159 0.4156 0.4151 0.4145

2245 9.17E-06 7.38E+11 -3.32E-03 -3.23E-03 -3.13E-03 -3.01E-03 0.4303 0.4207 0.4087 0.3938 0.4157 0.4153 0.4148 0.4143

2245 9.17E-06 7.75E+11 -3.27E-03 -3.18E-03 -3.08E-03 -2.96E-03 0.4232 0.4137 0.4018 0.3872 0.4154 0.4150 0.4146 0.4140

2245 9.17E-06 8.13E+11 -3.22E-03 -3.13E-03 -3.03E-03 -2.92E-03 0.4164 0.4072 0.3955 0.3811 0.4151 0.4148 0.4143 0.4138

2245 9.17E-06 8.50E+11 -3.17E-03 -3.08E-03 -2.99E-03 -2.87E-03 0.4101 0.4010 0.3895 0.3753 0.4149 0.4146 0.4141 0.4136
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Table 14 – continued from previous page

ρ (kg/m3) t (m) E (Pa)
U3 (m) SE (J) W/Bskin

ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4

2245 9.17E-06 8.88E+11 -3.12E-03 -3.04E-03 -2.94E-03 -2.83E-03 0.4042 0.3952 0.3838 0.3698 0.4147 0.4143 0.4139 0.4134

2245 9.17E-06 9.25E+11 -3.08E-03 -3.00E-03 -2.90E-03 -2.79E-03 0.3984 0.3895 0.3784 0.3646 0.4145 0.4141 0.4137 0.4132

2245 9.17E-06 9.63E+11 -3.04E-03 -2.96E-03 -2.87E-03 -2.76E-03 0.3931 0.3843 0.3733 0.3598 0.4143 0.4139 0.4135 0.4130

2245 9.17E-06 1.00E+12 -3.00E-03 -2.92E-03 -2.83E-03 -2.72E-03 0.3880 0.3794 0.3685 0.3551 0.4141 0.4138 0.4133 0.4129

2353 8.75E-06 1.00E+11 -6.62E-03 -6.45E-03 -6.25E-03 -6.01E-03 0.8742 0.8540 0.8287 0.7979 0.4326 0.4318 0.4309 0.4297

2353 8.75E-06 1.38E+11 -5.94E-03 -5.79E-03 -5.61E-03 -5.39E-03 0.7809 0.7630 0.7405 0.7130 0.4290 0.4283 0.4274 0.4264

2353 8.75E-06 1.75E+11 -5.48E-03 -5.33E-03 -5.17E-03 -4.97E-03 0.7174 0.7010 0.6805 0.6553 0.4265 0.4259 0.4251 0.4242

2353 8.75E-06 2.13E+11 -5.13E-03 -4.99E-03 -4.84E-03 -4.65E-03 0.6704 0.6552 0.6360 0.6126 0.4247 0.4242 0.4234 0.4225

2353 8.75E-06 2.50E+11 -4.85E-03 -4.73E-03 -4.58E-03 -4.41E-03 0.6336 0.6193 0.6012 0.5791 0.4233 0.4228 0.4221 0.4213

2353 8.75E-06 2.88E+11 -4.63E-03 -4.51E-03 -4.37E-03 -4.20E-03 0.6037 0.5900 0.5729 0.5519 0.4222 0.4217 0.4210 0.4202

2353 8.75E-06 3.25E+11 -4.44E-03 -4.33E-03 -4.19E-03 -4.03E-03 0.5787 0.5656 0.5492 0.5291 0.4212 0.4208 0.4201 0.4194

2353 8.75E-06 3.63E+11 -4.28E-03 -4.17E-03 -4.04E-03 -3.89E-03 0.5573 0.5448 0.5290 0.5096 0.4204 0.4200 0.4194 0.4186

2353 8.75E-06 4.00E+11 -4.14E-03 -4.04E-03 -3.91E-03 -3.76E-03 0.5388 0.5267 0.5115 0.4928 0.4197 0.4193 0.4187 0.4180

2353 8.75E-06 4.38E+11 -4.02E-03 -3.92E-03 -3.79E-03 -3.65E-03 0.5225 0.5108 0.4960 0.4779 0.4191 0.4187 0.4181 0.4174

2353 8.75E-06 4.75E+11 -3.91E-03 -3.81E-03 -3.69E-03 -3.55E-03 0.5080 0.4966 0.4823 0.4647 0.4186 0.4181 0.4176 0.4169

2353 8.75E-06 5.13E+11 -3.81E-03 -3.71E-03 -3.60E-03 -3.46E-03 0.4950 0.4839 0.4699 0.4528 0.4181 0.4177 0.4171 0.4165

2353 8.75E-06 5.50E+11 -3.72E-03 -3.63E-03 -3.51E-03 -3.38E-03 0.4832 0.4724 0.4588 0.4420 0.4176 0.4172 0.4167 0.4161

2353 8.75E-06 5.88E+11 -3.64E-03 -3.55E-03 -3.43E-03 -3.30E-03 0.4724 0.4619 0.4486 0.4322 0.4172 0.4168 0.4163 0.4157

2353 8.75E-06 6.25E+11 -3.57E-03 -3.47E-03 -3.36E-03 -3.24E-03 0.4626 0.4523 0.4392 0.4232 0.4169 0.4165 0.4160 0.4154

2353 8.75E-06 6.63E+11 -3.50E-03 -3.41E-03 -3.30E-03 -3.17E-03 0.4535 0.4434 0.4306 0.4149 0.4165 0.4161 0.4157 0.4151

2353 8.75E-06 7.00E+11 -3.43E-03 -3.34E-03 -3.24E-03 -3.12E-03 0.4451 0.4352 0.4226 0.4073 0.4162 0.4158 0.4154 0.4148

2353 8.75E-06 7.38E+11 -3.37E-03 -3.29E-03 -3.18E-03 -3.06E-03 0.4373 0.4275 0.4152 0.4001 0.4159 0.4155 0.4151 0.4145

2353 8.75E-06 7.75E+11 -3.32E-03 -3.23E-03 -3.13E-03 -3.01E-03 0.4300 0.4204 0.4083 0.3934 0.4156 0.4153 0.4148 0.4143

2353 8.75E-06 8.13E+11 -3.27E-03 -3.18E-03 -3.08E-03 -2.96E-03 0.4231 0.4137 0.4018 0.3872 0.4154 0.4150 0.4146 0.4140

2353 8.75E-06 8.50E+11 -3.22E-03 -3.13E-03 -3.03E-03 -2.92E-03 0.4167 0.4074 0.3957 0.3813 0.4151 0.4148 0.4144 0.4138

2353 8.75E-06 8.88E+11 -3.17E-03 -3.09E-03 -2.99E-03 -2.88E-03 0.4106 0.4015 0.3900 0.3758 0.4149 0.4146 0.4141 0.4136

2353 8.75E-06 9.25E+11 -3.13E-03 -3.05E-03 -2.95E-03 -2.84E-03 0.4049 0.3959 0.3845 0.3705 0.4147 0.4144 0.4139 0.4134

2353 8.75E-06 9.63E+11 -3.09E-03 -3.01E-03 -2.91E-03 -2.80E-03 0.3994 0.3905 0.3793 0.3655 0.4145 0.4142 0.4138 0.4132
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Table 14 – continued from previous page

ρ (kg/m3) t (m) E (Pa)
U3 (m) SE (J) W/Bskin

ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4

2353 8.75E-06 1.00E+12 -3.05E-03 -2.97E-03 -2.87E-03 -2.76E-03 0.3942 0.3855 0.3744 0.3608 0.4143 0.4140 0.4136 0.4131

2461 8.37E-06 1.00E+11 -6.72E-03 -6.55E-03 -6.34E-03 -6.10E-03 0.8887 0.8682 0.8421 0.8107 0.4332 0.4324 0.4314 0.4302

2461 8.37E-06 1.38E+11 -6.03E-03 -5.88E-03 -5.69E-03 -5.48E-03 0.7934 0.7752 0.7523 0.7243 0.4295 0.4288 0.4279 0.4268

2461 8.37E-06 1.75E+11 -5.56E-03 -5.41E-03 -5.24E-03 -5.05E-03 0.7287 0.7121 0.6912 0.6656 0.4270 0.4263 0.4255 0.4246

2461 8.37E-06 2.13E+11 -5.21E-03 -5.07E-03 -4.91E-03 -4.72E-03 0.6809 0.6655 0.6460 0.6222 0.4251 0.4246 0.4238 0.4229

2461 8.37E-06 2.50E+11 -4.93E-03 -4.80E-03 -4.65E-03 -4.47E-03 0.6435 0.6290 0.6106 0.5881 0.4237 0.4232 0.4225 0.4216

2461 8.37E-06 2.88E+11 -4.70E-03 -4.58E-03 -4.43E-03 -4.27E-03 0.6131 0.5993 0.5818 0.5605 0.4226 0.4220 0.4214 0.4206

2461 8.37E-06 3.25E+11 -4.51E-03 -4.39E-03 -4.26E-03 -4.09E-03 0.5877 0.5744 0.5578 0.5373 0.4216 0.4211 0.4205 0.4197

2461 8.37E-06 3.63E+11 -4.35E-03 -4.23E-03 -4.10E-03 -3.95E-03 0.5660 0.5533 0.5372 0.5175 0.4208 0.4203 0.4197 0.4189

2461 8.37E-06 4.00E+11 -4.21E-03 -4.10E-03 -3.97E-03 -3.82E-03 0.5472 0.5349 0.5194 0.5004 0.4201 0.4196 0.4190 0.4183

2461 8.37E-06 4.38E+11 -4.08E-03 -3.98E-03 -3.85E-03 -3.70E-03 0.5306 0.5187 0.5037 0.4853 0.4194 0.4190 0.4184 0.4177

2461 8.37E-06 4.75E+11 -3.97E-03 -3.87E-03 -3.75E-03 -3.60E-03 0.5159 0.5043 0.4897 0.4718 0.4189 0.4184 0.4179 0.4172

2461 8.37E-06 5.13E+11 -3.87E-03 -3.77E-03 -3.65E-03 -3.51E-03 0.5026 0.4914 0.4772 0.4598 0.4184 0.4179 0.4174 0.4168

2461 8.37E-06 5.50E+11 -3.78E-03 -3.68E-03 -3.57E-03 -3.43E-03 0.4907 0.4797 0.4658 0.4488 0.4179 0.4175 0.4170 0.4163

2461 8.37E-06 5.88E+11 -3.70E-03 -3.60E-03 -3.49E-03 -3.35E-03 0.4797 0.4690 0.4555 0.4389 0.4175 0.4171 0.4166 0.4160

2461 8.37E-06 6.25E+11 -3.62E-03 -3.53E-03 -3.42E-03 -3.29E-03 0.4697 0.4592 0.4460 0.4297 0.4171 0.4167 0.4162 0.4156

2461 8.37E-06 6.63E+11 -3.55E-03 -3.46E-03 -3.35E-03 -3.22E-03 0.4605 0.4502 0.4372 0.4213 0.4168 0.4164 0.4159 0.4153

2461 8.37E-06 7.00E+11 -3.49E-03 -3.39E-03 -3.29E-03 -3.16E-03 0.4519 0.4418 0.4291 0.4135 0.4165 0.4161 0.4156 0.4150

2461 8.37E-06 7.38E+11 -3.43E-03 -3.34E-03 -3.23E-03 -3.11E-03 0.4440 0.4341 0.4216 0.4063 0.4162 0.4158 0.4153 0.4148

2461 8.37E-06 7.75E+11 -3.37E-03 -3.28E-03 -3.18E-03 -3.06E-03 0.4366 0.4268 0.4146 0.3995 0.4159 0.4155 0.4151 0.4145

2461 8.37E-06 8.13E+11 -3.32E-03 -3.23E-03 -3.13E-03 -3.01E-03 0.4296 0.4200 0.4080 0.3931 0.4156 0.4153 0.4148 0.4143

2461 8.37E-06 8.50E+11 -3.27E-03 -3.18E-03 -3.08E-03 -2.96E-03 0.4231 0.4137 0.4018 0.3872 0.4154 0.4150 0.4146 0.4140

2461 8.37E-06 8.88E+11 -3.22E-03 -3.14E-03 -3.04E-03 -2.92E-03 0.4169 0.4076 0.3959 0.3815 0.4151 0.4148 0.4144 0.4138

2461 8.37E-06 9.25E+11 -3.18E-03 -3.09E-03 -2.99E-03 -2.88E-03 0.4111 0.4020 0.3904 0.3762 0.4149 0.4146 0.4142 0.4136

2461 8.37E-06 9.63E+11 -3.13E-03 -3.05E-03 -2.96E-03 -2.84E-03 0.4056 0.3966 0.3852 0.3712 0.4147 0.4144 0.4140 0.4134

2461 8.37E-06 1.00E+12 -3.09E-03 -3.01E-03 -2.92E-03 -2.81E-03 0.4003 0.3915 0.3801 0.3663 0.4145 0.4142 0.4138 0.4133

2569 8.02E-06 1.00E+11 -6.82E-03 -6.64E-03 -6.44E-03 -6.19E-03 0.9026 0.8817 0.8551 0.8230 0.4337 0.4329 0.4319 0.4306

2569 8.02E-06 1.38E+11 -6.12E-03 -5.96E-03 -5.77E-03 -5.56E-03 0.8056 0.7871 0.7638 0.7353 0.4299 0.4292 0.4283 0.4272
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Table 14 – continued from previous page

ρ (kg/m3) t (m) E (Pa)
U3 (m) SE (J) W/Bskin

ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4

2569 8.02E-06 1.75E+11 -5.64E-03 -5.49E-03 -5.32E-03 -5.12E-03 0.7399 0.7229 0.7017 0.6757 0.4274 0.4268 0.4259 0.4250

2569 8.02E-06 2.13E+11 -5.28E-03 -5.14E-03 -4.98E-03 -4.79E-03 0.6912 0.6755 0.6558 0.6315 0.4255 0.4249 0.4242 0.4233

2569 8.02E-06 2.50E+11 -5.00E-03 -4.87E-03 -4.72E-03 -4.54E-03 0.6532 0.6384 0.6198 0.5969 0.4241 0.4235 0.4228 0.4219

2569 8.02E-06 2.88E+11 -4.77E-03 -4.65E-03 -4.50E-03 -4.33E-03 0.6223 0.6082 0.5905 0.5688 0.4229 0.4224 0.4217 0.4209

2569 8.02E-06 3.25E+11 -4.58E-03 -4.46E-03 -4.32E-03 -4.15E-03 0.5965 0.5830 0.5661 0.5453 0.4219 0.4214 0.4208 0.4200

2569 8.02E-06 3.63E+11 -4.41E-03 -4.30E-03 -4.16E-03 -4.00E-03 0.5744 0.5615 0.5452 0.5252 0.4211 0.4206 0.4200 0.4192

2569 8.02E-06 4.00E+11 -4.27E-03 -4.16E-03 -4.03E-03 -3.87E-03 0.5553 0.5428 0.5271 0.5078 0.4204 0.4199 0.4193 0.4186

2569 8.02E-06 4.38E+11 -4.14E-03 -4.03E-03 -3.91E-03 -3.76E-03 0.5385 0.5264 0.5112 0.4925 0.4197 0.4193 0.4187 0.4180

2569 8.02E-06 4.75E+11 -4.03E-03 -3.92E-03 -3.80E-03 -3.66E-03 0.5235 0.5118 0.4970 0.4788 0.4192 0.4187 0.4182 0.4175

2569 8.02E-06 5.13E+11 -3.93E-03 -3.82E-03 -3.70E-03 -3.56E-03 0.5101 0.4986 0.4842 0.4666 0.4186 0.4182 0.4177 0.4170

2569 8.02E-06 5.50E+11 -3.83E-03 -3.73E-03 -3.62E-03 -3.48E-03 0.4979 0.4868 0.4727 0.4555 0.4182 0.4178 0.4172 0.4166

2569 8.02E-06 5.88E+11 -3.75E-03 -3.65E-03 -3.54E-03 -3.40E-03 0.4868 0.4759 0.4622 0.4453 0.4178 0.4174 0.4168 0.4162

2569 8.02E-06 6.25E+11 -3.67E-03 -3.58E-03 -3.46E-03 -3.33E-03 0.4766 0.4660 0.4526 0.4361 0.4174 0.4170 0.4165 0.4159

2569 8.02E-06 6.63E+11 -3.60E-03 -3.51E-03 -3.40E-03 -3.27E-03 0.4673 0.4568 0.4437 0.4275 0.4170 0.4166 0.4162 0.4155

2569 8.02E-06 7.00E+11 -3.54E-03 -3.44E-03 -3.34E-03 -3.21E-03 0.4586 0.4483 0.4354 0.4196 0.4167 0.4163 0.4158 0.4153

2569 8.02E-06 7.38E+11 -3.48E-03 -3.38E-03 -3.28E-03 -3.15E-03 0.4505 0.4405 0.4278 0.4122 0.4164 0.4160 0.4156 0.4150

2569 8.02E-06 7.75E+11 -3.42E-03 -3.33E-03 -3.22E-03 -3.10E-03 0.4430 0.4331 0.4206 0.4053 0.4161 0.4158 0.4153 0.4147

2569 8.02E-06 8.13E+11 -3.36E-03 -3.28E-03 -3.17E-03 -3.05E-03 0.4359 0.4262 0.4140 0.3989 0.4159 0.4155 0.4150 0.4145

2569 8.02E-06 8.50E+11 -3.31E-03 -3.23E-03 -3.13E-03 -3.01E-03 0.4293 0.4197 0.4077 0.3928 0.4156 0.4153 0.4148 0.4143

2569 8.02E-06 8.88E+11 -3.27E-03 -3.18E-03 -3.08E-03 -2.96E-03 0.4231 0.4136 0.4017 0.3871 0.4154 0.4150 0.4146 0.4140

2569 8.02E-06 9.25E+11 -3.22E-03 -3.14E-03 -3.04E-03 -2.92E-03 0.4172 0.4079 0.3962 0.3817 0.4152 0.4148 0.4144 0.4138

2569 8.02E-06 9.63E+11 -3.18E-03 -3.10E-03 -3.00E-03 -2.88E-03 0.4116 0.4024 0.3909 0.3766 0.4149 0.4146 0.4142 0.4136

2569 8.02E-06 1.00E+12 -3.14E-03 -3.06E-03 -2.96E-03 -2.85E-03 0.4063 0.3972 0.3858 0.3718 0.4148 0.4144 0.4140 0.4135

2677 7.69E-06 1.00E+11 -6.92E-03 -6.74E-03 -6.53E-03 -6.28E-03 0.9160 0.8948 0.8681 0.8352 0.4342 0.4334 0.4324 0.4311

2677 7.69E-06 1.38E+11 -6.21E-03 -6.05E-03 -5.86E-03 -5.63E-03 0.8174 0.7986 0.7750 0.7461 0.4304 0.4297 0.4288 0.4277

2677 7.69E-06 1.75E+11 -5.72E-03 -5.57E-03 -5.40E-03 -5.19E-03 0.7507 0.7335 0.7119 0.6855 0.4278 0.4272 0.4263 0.4253

2677 7.69E-06 2.13E+11 -5.36E-03 -5.22E-03 -5.05E-03 -4.86E-03 0.7012 0.6853 0.6652 0.6406 0.4259 0.4253 0.4245 0.4236

2677 7.69E-06 2.50E+11 -5.07E-03 -4.94E-03 -4.78E-03 -4.60E-03 0.6626 0.6476 0.6287 0.6055 0.4244 0.4239 0.4232 0.4223
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Table 14 – continued from previous page

ρ (kg/m3) t (m) E (Pa)
U3 (m) SE (J) W/Bskin

ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4

2677 7.69E-06 2.88E+11 -4.84E-03 -4.71E-03 -4.56E-03 -4.39E-03 0.6312 0.6169 0.5990 0.5769 0.4232 0.4227 0.4220 0.4212

2677 7.69E-06 3.25E+11 -4.64E-03 -4.52E-03 -4.38E-03 -4.21E-03 0.6050 0.5914 0.5742 0.5531 0.4222 0.4217 0.4211 0.4203

2677 7.69E-06 3.63E+11 -4.47E-03 -4.36E-03 -4.22E-03 -4.06E-03 0.5826 0.5695 0.5530 0.5327 0.4214 0.4209 0.4203 0.4195

2677 7.69E-06 4.00E+11 -4.33E-03 -4.21E-03 -4.08E-03 -3.93E-03 0.5632 0.5505 0.5346 0.5150 0.4207 0.4202 0.4196 0.4188

2677 7.69E-06 4.38E+11 -4.20E-03 -4.09E-03 -3.96E-03 -3.81E-03 0.5461 0.5339 0.5184 0.4994 0.4200 0.4195 0.4190 0.4183

2677 7.69E-06 4.75E+11 -4.08E-03 -3.98E-03 -3.85E-03 -3.71E-03 0.5310 0.5190 0.5040 0.4856 0.4194 0.4190 0.4184 0.4177

2677 7.69E-06 5.13E+11 -3.98E-03 -3.88E-03 -3.76E-03 -3.61E-03 0.5173 0.5057 0.4911 0.4732 0.4189 0.4185 0.4179 0.4173

2677 7.69E-06 5.50E+11 -3.89E-03 -3.79E-03 -3.67E-03 -3.53E-03 0.5050 0.4936 0.4794 0.4619 0.4185 0.4180 0.4175 0.4168

2677 7.69E-06 5.88E+11 -3.80E-03 -3.70E-03 -3.59E-03 -3.45E-03 0.4937 0.4827 0.4687 0.4516 0.4180 0.4176 0.4171 0.4165

2677 7.69E-06 6.25E+11 -3.73E-03 -3.63E-03 -3.51E-03 -3.38E-03 0.4834 0.4726 0.4590 0.4422 0.4176 0.4172 0.4167 0.4161

2677 7.69E-06 6.63E+11 -3.65E-03 -3.56E-03 -3.45E-03 -3.31E-03 0.4739 0.4633 0.4499 0.4335 0.4173 0.4169 0.4164 0.4158

2677 7.69E-06 7.00E+11 -3.59E-03 -3.49E-03 -3.38E-03 -3.25E-03 0.4651 0.4547 0.4416 0.4255 0.4170 0.4166 0.4161 0.4155

2677 7.69E-06 7.38E+11 -3.52E-03 -3.43E-03 -3.32E-03 -3.20E-03 0.4569 0.4467 0.4338 0.4180 0.4166 0.4163 0.4158 0.4152

2677 7.69E-06 7.75E+11 -3.47E-03 -3.37E-03 -3.27E-03 -3.14E-03 0.4492 0.4392 0.4266 0.4110 0.4164 0.4160 0.4155 0.4149

2677 7.69E-06 8.13E+11 -3.41E-03 -3.32E-03 -3.22E-03 -3.09E-03 0.4421 0.4322 0.4198 0.4045 0.4161 0.4157 0.4153 0.4147

2677 7.69E-06 8.50E+11 -3.36E-03 -3.27E-03 -3.17E-03 -3.05E-03 0.4353 0.4256 0.4134 0.3984 0.4158 0.4155 0.4150 0.4145

2677 7.69E-06 8.88E+11 -3.31E-03 -3.22E-03 -3.12E-03 -3.00E-03 0.4290 0.4194 0.4074 0.3926 0.4156 0.4152 0.4148 0.4142

2677 7.69E-06 9.25E+11 -3.27E-03 -3.18E-03 -3.08E-03 -2.96E-03 0.4230 0.4136 0.4017 0.3871 0.4154 0.4150 0.4146 0.4140

2677 7.69E-06 9.63E+11 -3.22E-03 -3.14E-03 -3.04E-03 -2.92E-03 0.4174 0.4081 0.3963 0.3819 0.4152 0.4148 0.4144 0.4138

2677 7.69E-06 1.00E+12 -3.18E-03 -3.10E-03 -3.00E-03 -2.89E-03 0.4120 0.4028 0.3912 0.3770 0.4150 0.4146 0.4142 0.4137

2784 7.40E-06 1.00E+11 -7.01E-03 -6.83E-03 -6.62E-03 -6.37E-03 0.9291 0.9075 0.8804 0.8472 0.4347 0.4339 0.4328 0.4316

2784 7.40E-06 1.38E+11 -6.29E-03 -6.13E-03 -5.93E-03 -5.71E-03 0.8289 0.8098 0.7858 0.7565 0.4308 0.4301 0.4292 0.4281

2784 7.40E-06 1.75E+11 -5.80E-03 -5.65E-03 -5.47E-03 -5.26E-03 0.7611 0.7437 0.7218 0.6950 0.4282 0.4276 0.4267 0.4257

2784 7.40E-06 2.13E+11 -5.43E-03 -5.29E-03 -5.12E-03 -4.93E-03 0.7109 0.6947 0.6744 0.6494 0.4263 0.4257 0.4249 0.4239

2784 7.40E-06 2.50E+11 -5.14E-03 -5.00E-03 -4.85E-03 -4.66E-03 0.6717 0.6565 0.6373 0.6138 0.4248 0.4242 0.4235 0.4226

2784 7.40E-06 2.88E+11 -4.90E-03 -4.77E-03 -4.62E-03 -4.45E-03 0.6399 0.6254 0.6072 0.5848 0.4236 0.4230 0.4223 0.4215

2784 7.40E-06 3.25E+11 -4.70E-03 -4.58E-03 -4.44E-03 -4.27E-03 0.6133 0.5994 0.5820 0.5606 0.4226 0.4220 0.4214 0.4206

2784 7.40E-06 3.63E+11 -4.53E-03 -4.41E-03 -4.28E-03 -4.11E-03 0.5906 0.5772 0.5605 0.5399 0.4217 0.4212 0.4206 0.4198
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Table 14 – continued from previous page

ρ (kg/m3) t (m) E (Pa)
U3 (m) SE (J) W/Bskin

ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4

2784 7.40E-06 4.00E+11 -4.39E-03 -4.27E-03 -4.14E-03 -3.98E-03 0.5709 0.5580 0.5418 0.5220 0.4209 0.4205 0.4199 0.4191

2784 7.40E-06 4.38E+11 -4.25E-03 -4.14E-03 -4.01E-03 -3.86E-03 0.5535 0.5411 0.5254 0.5062 0.4203 0.4198 0.4192 0.4185

2784 7.40E-06 4.75E+11 -4.14E-03 -4.03E-03 -3.90E-03 -3.76E-03 0.5381 0.5260 0.5108 0.4921 0.4197 0.4193 0.4187 0.4180

2784 7.40E-06 5.13E+11 -4.03E-03 -3.93E-03 -3.81E-03 -3.66E-03 0.5243 0.5125 0.4977 0.4795 0.4192 0.4187 0.4182 0.4175

2784 7.40E-06 5.50E+11 -3.94E-03 -3.84E-03 -3.72E-03 -3.57E-03 0.5118 0.5003 0.4859 0.4681 0.4187 0.4183 0.4177 0.4171

2784 7.40E-06 5.88E+11 -3.85E-03 -3.75E-03 -3.63E-03 -3.50E-03 0.5004 0.4892 0.4750 0.4577 0.4183 0.4179 0.4173 0.4167

2784 7.40E-06 6.25E+11 -3.77E-03 -3.68E-03 -3.56E-03 -3.42E-03 0.4899 0.4789 0.4651 0.4482 0.4179 0.4175 0.4170 0.4163

2784 7.40E-06 6.63E+11 -3.70E-03 -3.60E-03 -3.49E-03 -3.36E-03 0.4803 0.4695 0.4560 0.4394 0.4175 0.4171 0.4166 0.4160

2784 7.40E-06 7.00E+11 -3.63E-03 -3.54E-03 -3.43E-03 -3.30E-03 0.4713 0.4608 0.4475 0.4312 0.4172 0.4168 0.4163 0.4157

2784 7.40E-06 7.38E+11 -3.57E-03 -3.48E-03 -3.37E-03 -3.24E-03 0.4630 0.4527 0.4396 0.4236 0.4169 0.4165 0.4160 0.4154

2784 7.40E-06 7.75E+11 -3.51E-03 -3.42E-03 -3.31E-03 -3.19E-03 0.4553 0.4451 0.4323 0.4165 0.4166 0.4162 0.4157 0.4151

2784 7.40E-06 8.13E+11 -3.46E-03 -3.37E-03 -3.26E-03 -3.14E-03 0.4480 0.4380 0.4254 0.4099 0.4163 0.4159 0.4155 0.4149

2784 7.40E-06 8.50E+11 -3.40E-03 -3.32E-03 -3.21E-03 -3.09E-03 0.4412 0.4313 0.4189 0.4037 0.4161 0.4157 0.4152 0.4147

2784 7.40E-06 8.88E+11 -3.36E-03 -3.27E-03 -3.16E-03 -3.04E-03 0.4348 0.4251 0.4128 0.3978 0.4158 0.4155 0.4150 0.4144

2784 7.40E-06 9.25E+11 -3.31E-03 -3.22E-03 -3.12E-03 -3.00E-03 0.4287 0.4191 0.4071 0.3923 0.4156 0.4152 0.4148 0.4142

2784 7.40E-06 9.63E+11 -3.27E-03 -3.18E-03 -3.08E-03 -2.96E-03 0.4229 0.4135 0.4016 0.3870 0.4154 0.4150 0.4146 0.4140

2784 7.40E-06 1.00E+12 -3.22E-03 -3.14E-03 -3.04E-03 -2.93E-03 0.4175 0.4082 0.3965 0.3821 0.4152 0.4148 0.4144 0.4139

2892 7.12E-06 1.00E+11 -7.10E-03 -6.92E-03 -6.70E-03 -6.45E-03 0.9420 0.9200 0.8925 0.8588 0.4352 0.4344 0.4333 0.4320

2892 7.12E-06 1.38E+11 -6.37E-03 -6.21E-03 -6.01E-03 -5.78E-03 0.8402 0.8208 0.7965 0.7667 0.4313 0.4305 0.4296 0.4285

2892 7.12E-06 1.75E+11 -5.87E-03 -5.72E-03 -5.54E-03 -5.33E-03 0.7713 0.7537 0.7315 0.7043 0.4286 0.4279 0.4271 0.4261

2892 7.12E-06 2.13E+11 -5.50E-03 -5.35E-03 -5.19E-03 -4.99E-03 0.7202 0.7040 0.6834 0.6581 0.4267 0.4260 0.4252 0.4243

2892 7.12E-06 2.50E+11 -5.20E-03 -5.07E-03 -4.91E-03 -4.72E-03 0.6807 0.6652 0.6458 0.6219 0.4251 0.4245 0.4238 0.4229

2892 7.12E-06 2.88E+11 -4.96E-03 -4.83E-03 -4.68E-03 -4.51E-03 0.6484 0.6337 0.6152 0.5925 0.4239 0.4233 0.4226 0.4218

2892 7.12E-06 3.25E+11 -4.76E-03 -4.64E-03 -4.49E-03 -4.32E-03 0.6214 0.6073 0.5897 0.5680 0.4229 0.4223 0.4217 0.4208

2892 7.12E-06 3.63E+11 -4.59E-03 -4.47E-03 -4.33E-03 -4.17E-03 0.5984 0.5849 0.5679 0.5470 0.4220 0.4215 0.4208 0.4200

2892 7.12E-06 4.00E+11 -4.44E-03 -4.33E-03 -4.19E-03 -4.03E-03 0.5784 0.5654 0.5490 0.5288 0.4212 0.4207 0.4201 0.4194

2892 7.12E-06 4.38E+11 -4.31E-03 -4.20E-03 -4.06E-03 -3.91E-03 0.5608 0.5482 0.5323 0.5128 0.4206 0.4201 0.4195 0.4188

2892 7.12E-06 4.75E+11 -4.19E-03 -4.08E-03 -3.95E-03 -3.80E-03 0.5452 0.5330 0.5175 0.4986 0.4200 0.4195 0.4189 0.4182
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Table 14 – continued from previous page

ρ (kg/m3) t (m) E (Pa)
U3 (m) SE (J) W/Bskin

ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4

2892 7.12E-06 5.13E+11 -4.09E-03 -3.98E-03 -3.85E-03 -3.71E-03 0.5312 0.5193 0.5042 0.4858 0.4194 0.4190 0.4184 0.4177

2892 7.12E-06 5.50E+11 -3.99E-03 -3.89E-03 -3.76E-03 -3.62E-03 0.5185 0.5069 0.4922 0.4742 0.4190 0.4185 0.4180 0.4173

2892 7.12E-06 5.88E+11 -3.90E-03 -3.80E-03 -3.68E-03 -3.54E-03 0.5069 0.4956 0.4813 0.4637 0.4185 0.4181 0.4176 0.4169

2892 7.12E-06 6.25E+11 -3.82E-03 -3.72E-03 -3.61E-03 -3.47E-03 0.4963 0.4852 0.4712 0.4540 0.4181 0.4177 0.4172 0.4165

2892 7.12E-06 6.63E+11 -3.75E-03 -3.65E-03 -3.54E-03 -3.40E-03 0.4865 0.4756 0.4619 0.4451 0.4178 0.4174 0.4168 0.4162

2892 7.12E-06 7.00E+11 -3.68E-03 -3.58E-03 -3.47E-03 -3.34E-03 0.4775 0.4668 0.4533 0.4368 0.4174 0.4170 0.4165 0.4159

2892 7.12E-06 7.38E+11 -3.62E-03 -3.52E-03 -3.41E-03 -3.28E-03 0.4691 0.4586 0.4454 0.4291 0.4171 0.4167 0.4162 0.4156

2892 7.12E-06 7.75E+11 -3.56E-03 -3.46E-03 -3.35E-03 -3.23E-03 0.4612 0.4509 0.4379 0.4220 0.4168 0.4164 0.4159 0.4153

2892 7.12E-06 8.13E+11 -3.50E-03 -3.41E-03 -3.30E-03 -3.18E-03 0.4538 0.4437 0.4309 0.4152 0.4165 0.4162 0.4157 0.4151

2892 7.12E-06 8.50E+11 -3.45E-03 -3.36E-03 -3.25E-03 -3.13E-03 0.4469 0.4370 0.4244 0.4089 0.4163 0.4159 0.4154 0.4149

2892 7.12E-06 8.88E+11 -3.40E-03 -3.31E-03 -3.21E-03 -3.08E-03 0.4404 0.4306 0.4182 0.4030 0.4160 0.4157 0.4152 0.4146

2892 7.12E-06 9.25E+11 -3.35E-03 -3.26E-03 -3.16E-03 -3.04E-03 0.4343 0.4246 0.4124 0.3974 0.4158 0.4154 0.4150 0.4144

2892 7.12E-06 9.63E+11 -3.31E-03 -3.22E-03 -3.12E-03 -3.00E-03 0.4284 0.4189 0.4069 0.3921 0.4156 0.4152 0.4148 0.4142

2892 7.12E-06 1.00E+12 -3.27E-03 -3.18E-03 -3.08E-03 -2.96E-03 0.4229 0.4135 0.4016 0.3870 0.4154 0.4150 0.4146 0.4140

3000 6.86E-06 1.00E+11 -7.19E-03 -7.01E-03 -6.79E-03 -6.53E-03 0.9546 0.9323 0.9044 0.8702 0.4357 0.4349 0.4338 0.4325

3000 6.86E-06 1.38E+11 -6.45E-03 -6.28E-03 -6.09E-03 -5.86E-03 0.8512 0.8316 0.8069 0.7768 0.4317 0.4310 0.4300 0.4288

3000 6.86E-06 1.75E+11 -5.95E-03 -5.79E-03 -5.61E-03 -5.40E-03 0.7814 0.7635 0.7410 0.7134 0.4290 0.4283 0.4275 0.4264

3000 6.86E-06 2.13E+11 -5.57E-03 -5.42E-03 -5.25E-03 -5.05E-03 0.7298 0.7131 0.6922 0.6666 0.4270 0.4264 0.4256 0.4246

3000 6.86E-06 2.50E+11 -5.27E-03 -5.13E-03 -4.97E-03 -4.78E-03 0.6895 0.6738 0.6541 0.6299 0.4255 0.4249 0.4241 0.4232

3000 6.86E-06 2.88E+11 -5.03E-03 -4.89E-03 -4.74E-03 -4.56E-03 0.6567 0.6418 0.6231 0.6001 0.4242 0.4237 0.4229 0.4221

3000 6.86E-06 3.25E+11 -4.82E-03 -4.70E-03 -4.55E-03 -4.38E-03 0.6293 0.6151 0.5972 0.5752 0.4232 0.4226 0.4220 0.4211

3000 6.86E-06 3.63E+11 -4.65E-03 -4.53E-03 -4.38E-03 -4.22E-03 0.6060 0.5923 0.5751 0.5540 0.4223 0.4218 0.4211 0.4203

3000 6.86E-06 4.00E+11 -4.50E-03 -4.38E-03 -4.24E-03 -4.08E-03 0.5858 0.5725 0.5559 0.5355 0.4215 0.4210 0.4204 0.4196

3000 6.86E-06 4.38E+11 -4.36E-03 -4.25E-03 -4.12E-03 -3.96E-03 0.5680 0.5552 0.5391 0.5193 0.4208 0.4204 0.4197 0.4190

3000 6.86E-06 4.75E+11 -4.24E-03 -4.13E-03 -4.00E-03 -3.85E-03 0.5521 0.5397 0.5241 0.5049 0.4202 0.4198 0.4192 0.4185

3000 6.86E-06 5.13E+11 -4.14E-03 -4.03E-03 -3.90E-03 -3.75E-03 0.5379 0.5258 0.5106 0.4919 0.4197 0.4192 0.4187 0.4180

3000 6.86E-06 5.50E+11 -4.04E-03 -3.93E-03 -3.81E-03 -3.67E-03 0.5250 0.5133 0.4984 0.4802 0.4192 0.4188 0.4182 0.4175

3000 6.86E-06 5.88E+11 -3.95E-03 -3.85E-03 -3.73E-03 -3.59E-03 0.5133 0.5018 0.4873 0.4695 0.4188 0.4183 0.4178 0.4171

Continued on next page
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Table 14 – continued from previous page

ρ (kg/m3) t (m) E (Pa)
U3 (m) SE (J) W/Bskin

ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4

3000 6.86E-06 6.25E+11 -3.87E-03 -3.77E-03 -3.65E-03 -3.51E-03 0.5026 0.4913 0.4771 0.4597 0.4184 0.4179 0.4174 0.4168

3000 6.86E-06 6.63E+11 -3.80E-03 -3.70E-03 -3.58E-03 -3.44E-03 0.4927 0.4816 0.4677 0.4507 0.4180 0.4176 0.4171 0.4164

3000 6.86E-06 7.00E+11 -3.73E-03 -3.63E-03 -3.51E-03 -3.38E-03 0.4835 0.4727 0.4590 0.4423 0.4176 0.4172 0.4167 0.4161

3000 6.86E-06 7.38E+11 -3.66E-03 -3.57E-03 -3.45E-03 -3.32E-03 0.4750 0.4643 0.4510 0.4345 0.4173 0.4169 0.4164 0.4158

3000 6.86E-06 7.75E+11 -3.60E-03 -3.51E-03 -3.40E-03 -3.27E-03 0.4670 0.4566 0.4434 0.4273 0.4170 0.4166 0.4161 0.4155

3000 6.86E-06 8.13E+11 -3.54E-03 -3.45E-03 -3.34E-03 -3.22E-03 0.4595 0.4493 0.4363 0.4204 0.4167 0.4164 0.4159 0.4153

3000 6.86E-06 8.50E+11 -3.49E-03 -3.40E-03 -3.29E-03 -3.17E-03 0.4525 0.4424 0.4297 0.4141 0.4165 0.4161 0.4156 0.4150

3000 6.86E-06 8.88E+11 -3.44E-03 -3.35E-03 -3.24E-03 -3.12E-03 0.4459 0.4360 0.4235 0.4080 0.4162 0.4159 0.4154 0.4148

3000 6.86E-06 9.25E+11 -3.39E-03 -3.30E-03 -3.20E-03 -3.08E-03 0.4397 0.4299 0.4175 0.4023 0.4160 0.4156 0.4152 0.4146

3000 6.86E-06 9.63E+11 -3.35E-03 -3.26E-03 -3.16E-03 -3.04E-03 0.4338 0.4241 0.4120 0.3970 0.4158 0.4154 0.4150 0.4144

3000 6.86E-06 1.00E+12 -3.31E-03 -3.22E-03 -3.12E-03 -3.00E-03 0.4282 0.4187 0.4066 0.3919 0.4156 0.4152 0.4148 0.4142
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A.7 Frame Standalone Model Convergence Study

The following table shows the results from the frame standalone mode convergence

study, using B32 beam elements. The model properties are: modulus of elasticity (303

GPa), Poison’s ratio (0.18) and an icosahedron radius of 0.1524 m. A linear buckling

analysis is performed considering the first five critical pressures (Pcr). Edge Seed refers

to the amount of elements along each edge and # Elements is the resulting number of

elements. Pcr,M D : i & i − 1 is the maximum error of all Pcr comparing row i and row

i − 1. Pcr,M D : i & iend is the maximum error of all Pcr comparing row i and row iend.

Table 15: Frame Standalone Model Convergence Study Results

Edge Seed # Elements Pcr1 (Pa) Pcr2 (Pa) Pcr3 (Pa) Pcr4 (Pa) Pcr5 (Pa)
Pcr,M D :
i & i − 1

Pcr,M D :
i & iend

5 150 5.22E-13 1.95E-01 1.95E-01 1.95E-01 2.31E-01 - 200%

6 180 3.88E-13 1.95E-01 1.95E-01 1.95E-01 2.30E-01 29.399% 200%

7 210 1.25E-12 1.95E-01 1.95E-01 1.95E-01 2.30E-01 105.318% 200%

8 240 1.18E-02 1.95E-01 1.95E-01 2.07E-01 2.30E-01 200.000% 0.022%

9 270 1.18E-02 1.95E-01 1.95E-01 2.07E-01 2.30E-01 0.010% 0.013%

10 300 1.18E-02 1.95E-01 1.95E-01 2.07E-01 2.30E-01 0.005% 0.010%

11 330 1.18E-02 1.95E-01 1.95E-01 2.07E-01 2.30E-01 0.005% 0.005%

12 360 1.18E-02 1.95E-01 1.95E-01 2.07E-01 2.30E-01 0.000% 0.005%

13 390 1.18E-02 1.95E-01 1.95E-01 2.07E-01 2.30E-01 0.005% 0.005%

14 420 1.18E-02 1.95E-01 1.95E-01 2.07E-01 2.30E-01 0.000% 0.005%

15 450 1.18E-02 1.95E-01 1.95E-01 2.07E-01 2.30E-01 0.004% 0.005%

16 480 1.18E-02 1.95E-01 1.95E-01 2.07E-01 2.30E-01 0.005% 0.005%

17 510 1.18E-02 1.95E-01 1.95E-01 2.07E-01 2.30E-01 0.000% 0.005%

18 540 1.18E-02 1.95E-01 1.95E-01 2.07E-01 2.30E-01 0.000% 0.005%

19 570 1.18E-02 1.95E-01 1.95E-01 2.07E-01 2.30E-01 0.000% 0.005%

20 600 1.18E-02 1.95E-01 1.95E-01 2.07E-01 2.30E-01 0.000% 0.005%

21 630 1.18E-02 1.95E-01 1.95E-01 2.07E-01 2.30E-01 0.005% 0.000%

22 660 1.18E-02 1.95E-01 1.95E-01 2.07E-01 2.30E-01 0.000% 0.000%

23 690 1.18E-02 1.95E-01 1.95E-01 2.07E-01 2.30E-01 0.000% 0.000%

24 720 1.18E-02 1.95E-01 1.95E-01 2.07E-01 2.30E-01 0.000% 0.000%

25 750 1.18E-02 1.95E-01 1.95E-01 2.07E-01 2.30E-01 0.000% 0.000%
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A.8 Frame Standalone Beam Profile Study

The following table shows the results from the frame beam profile study. The model

properties are: modulus of elasticity (303 GPa), Poison’s ratio (0.18), 600 B32 elements,

icosahedron radius (0.1524 m) and frame W/B of 0.35 (see Equation (2.18)) with circular

beam profile. Both linear static and buckling analyses are performed, comparing the

radius (rn), moment of inertia (In), maximum displacement (Umax,n), maximum von Mises

stress (S max,n) and critical pressure (Pcr,n) change with beam thickness to radius ratio(c).

All results are normalized against the solid beam profile.

Table 16: Frame Beam Profile Study Results

c rn In Umax,n Smax,n Pcrit1,n Pcrit2,n

0.05 3.20 19.51 0.05 0.17 19.46 19.42

0.1 2.29 9.53 0.11 0.24 9.49 9.48

0.15 1.90 6.21 0.16 0.29 6.16 6.16

0.2 1.67 4.56 0.22 0.34 4.50 4.50

0.25 1.51 3.57 0.29 0.38 3.50 3.50

0.3 1.40 2.92 0.35 0.43 2.83 2.83

0.35 1.32 2.46 0.43 0.47 2.36 2.36

0.4 1.25 2.13 0.50 0.50 2.00 2.00

0.45 1.20 1.87 0.58 0.54 1.72 1.72

0.5 1.15 1.67 0.67 0.58 1.50 1.50

0.55 1.12 1.51 0.76 0.62 1.32 1.32

0.6 1.09 1.38 0.86 0.66 1.17 1.17

0.65 1.07 1.28 0.96 0.70 1.04 1.04

0.7 1.05 1.20 1.08 0.74 0.93 0.93

0.75 1.03 1.13 1.20 0.78 0.83 0.83

0.8 1.02 1.08 1.33 0.82 0.75 0.75

0.85 1.01 1.05 1.48 0.86 0.68 0.68
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Appendix B: Python Codes

B.1 Circular Model
# -*- coding: mbcs -*-

from part import*

from material import*

from section import*

from assembly import*

from step import*

from interaction import*

from load import*

from mesh import*

from job import*

from sketch import*

from visualization import*

from connectorBehavior import*

from odbAccess import *

from abaqusConstants import *

from odbMaterial import *

from odbSection import *

import os

session.journalOptions.setValues(replayGeometry=COORDINATE, recoverGeometry=COORDINATE)

# Sets Working Directory *****************************************************************************

os.chdir(path)

# Load variables ************************************************************************************

execfile(’Var_circle.py’)

# Model/Job name and creation ************************************************************************

mdb.Model(modelType=STANDARD_EXPLICIT,name=model_name)

# Creates Circular Membrane ****************************************************************************

mdb.models[model_name].ConstrainedSketch(name=’profile’,sheetSize=200.0)

mdb.models[model_name].sketches[’profile’].CircleByCenterPerimeter(

center=(0.0, 0.0), point1=(0.0,r_circular_membrane))

mdb.models[model_name].Part(dimensionality=THREE_D, name=’Circle’,type=DEFORMABLE_BODY)

mdb.models[model_name].parts[’Circle’].BaseShell(sketch=mdb.models[model_name].sketches[’profile’])

skin = mdb.models[model_name].parts[’Circle’]

# Materials ********************************************************************************

mdb.models[model_name].Material(name=’Skin Material’)

mdb.models[model_name].materials[’Skin Material’].Density(table=((skin_density,),))

mdb.models[model_name].materials[’Skin Material’].Elastic(table=((skin_modulus,skin_poisson),))

# Profiles & Section Assignments ***********************************************************

if membrane == 1:

mdb.models[model_name].MembraneSection(material=

’Skin Material’, name=’Skin Section’, poisson=skin_poisson,poissonDefinition=VALUE,

thickness=skin_thickness,thicknessField=’’,thicknessType=UNIFORM)

else:

mdb.models[model_name].HomogeneousShellSection(idealization=skin_section_idealization,

material=’Skin Material’,name=’Skin Section’,poisson=skin_poisson,poissonDefinition=VALUE,

preIntegrate=ON,thickness=skin_thickness,thicknessField=’’,thicknessModulus=None,
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thicknessType=UNIFORM, useDensity=ON)

skin.SectionAssignment(offset=0.0,offsetField=’’,offsetType=skin_section_location,region=Region(

faces=skin.faces.findAt(((0,0,0),),)),sectionName=’Skin Section’,thicknessAssignment=FROM_SECTION)

# Assembly *********************************************************************************

mdb.models[model_name].rootAssembly.Instance(dependent=OFF,name=’Skin Instance’,part=skin)

skin_instance = mdb.models[model_name].rootAssembly.instances[’Skin Instance’]

root_assembly = mdb.models[model_name].rootAssembly

# Spherical Datum Convertion ****************************************************************

datumid = skin.DatumCsysByThreePoints(coordSysType=SPHERICAL,

line1=(1.0, 0.0, 0.0), line2=(0.0, 1.0, 0.0), name=’Spherical’,origin=(0.0, 0.0, 0.0)).id

skin.MaterialOrientation(

additionalRotationField=’’,additionalRotationType=ROTATION_NONE,angle=0.0,axis=AXIS_3, fieldName=’’,

localCsys=skin.datums[datumid],

orientationType=SYSTEM,region=Region(faces=skin.faces.findAt(((0,0,0),))))

mdb.models[model_name].rootAssembly.regenerate()

#Step **************************************************************************************

if stabilization == 1:

mdb.models[model_name].StaticStep(initialInc=initial_inc,maxInc=max_inc,

minInc=min_inc,maxNumInc=maxnuminc,name=stepname,nlgeom=nonlinear_effects,previous=’Initial’,

continueDampingFactors=False,adaptiveDampingRatio=stabilization_ratio,

stabilizationMagnitude=stabilization_magn,stabilizationMethod=DISSIPATED_ENERGY_FRACTION)

elif step_type == 1:

mdb.models[model_name].StaticRiksStep(initialArcInc=initial_ArcInc,maxLPF=max_LPF,

minArcInc=min_ArcInc,maxArcInc=max_ArcInc,maxNumInc=maxnuminc,name=stepname,

nlgeom=nonlinear_effects,previous=’Initial’)

else:

mdb.models[model_name].StaticStep(initialInc=initial_inc,maxInc=max_inc,

minInc=min_inc,maxNumInc=maxnuminc,name=stepname,nlgeom=nonlinear_effects,previous=’Initial’)

#Pressure Load *****************************************************************************

mdb.models[model_name].Pressure(amplitude=UNSET,createStepName=stepname,

distributionType=UNIFORM,field=’’,magnitude=P,name=’Pressure Towards Center’,

region=Region(side1Faces=skin_instance.faces.findAt(((0,0,0),),)))

# BC ****************************************************************************************

datumid = root_assembly.DatumCsysByThreePoints(coordSysType=SPHERICAL,

line1=(1.0, 0.0, 0.0), line2=(0.0, 1.0, 0.0), name=’Spherical’,origin=(0.0, 0.0, 0.0)).id

if bc_type == 1:

mdb.models[model_name].DisplacementBC(amplitude=UNSET,createStepName=stepname,

distributionType=UNIFORM,fieldName=’’,fixed=OFF,

localCsys=root_assembly.datums[datumid],name=’BC-rotations allowed’,

region=Region(edges=skin_instance.edges.findAt(((r_circular_membrane,0,0),))),

u1=0.0,u2=0.0,u3=0.0) ## rotations allowed

else:

mdb.models[model_name].DisplacementBC(amplitude=UNSET,createStepName=stepname,

distributionType=UNIFORM,fieldName=’’,fixed=OFF,

localCsys=root_assembly.datums[datumid],name=’BC-encastre’,

region=Region(edges=skin_instance.edges.findAt(((r_circular_membrane,0,0),))),

u1=0.0,u2=0.0,u3=0.0,ur1=0.0,ur2=0.0,ur3=0.0) ## encastre

# Mesh **************************************************************************************

# Seeding
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mdb.models[model_name].rootAssembly.seedEdgeByNumber(constraint=FINER,edges=

skin_instance.edges.findAt(((r_circular_membrane,0,0),)),number=skin_seed_number) # seeding by edge

##root_assembly.seedPartInstance(deviationFactor=0.1, minSizeFactor=0.1,

## regions=(skin_instance,),size=skin_seed_number) # seeding by instance

# Element Shape

root_assembly.setMeshControls(elemShape=skin_element_shape,regions=

skin_instance.faces.findAt(((0,0,0),),))

# Element Type

mdb.models[model_name].rootAssembly.setElementType(elemTypes=(ElemType(elemCode=skin_element_type1,

elemLibrary=STANDARD),ElemType(elemCode=skin_element_type2,elemLibrary=STANDARD,

secondOrderAccuracy=OFF)),regions=(skin_instance.faces.findAt(((0,0,0),)),))

#Mesh Instance

mdb.models[model_name].rootAssembly.generateMesh(regions=(skin_instance,))

# Field Outputs ******************************************************************************************

if membrane == 1:

mdb.models[model_name].FieldOutputRequest(name=’Field-Output’,createStepName=stepname,

variables=(’S’,’U’))

else:

mdb.models[model_name].FieldOutputRequest(name=’Field-Output’,createStepName=stepname,

variables=(’S’,’U’),sectionPoints=(1,2,3))

del mdb.models[model_name].fieldOutputRequests[’F-Output-1’]

# Job ****************************************************************************************************

mdb.Job(atTime=None, contactPrint=OFF, description=’’,echoPrint=OFF,explicitPrecision=SINGLE,

getMemoryFromAnalysis=False,historyPrint=OFF,memory=memory_usage,memoryUnits=MEGA_BYTES,

model=model_name,modelPrint=OFF,multiprocessingMode=DEFAULT,name=job_name,nodalOutputPrecision=FULL,

numCpus=num_cores,numDomains=num_cores,numGPUs=num_GPUs,queue=None,scratch=’’,type=ANALYSIS,

userSubroutine=’’,waitHours=0, waitMinutes=0)

# Submission *********************************************************************************************

mdb.jobs[job_name].submit(consistencyChecking=OFF)

mdb.jobs[job_name].waitForCompletion()

B.2 Square Model

# -*- coding: mbcs -*-

from part import*

from material import*

from section import*

from assembly import*

from step import*

from interaction import*

from load import*

from mesh import*

from job import*

from sketch import*

from visualization import*

from connectorBehavior import*

from odbAccess import *

from abaqusConstants import *

from odbMaterial import *

from odbSection import *
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import os

import math

session.journalOptions.setValues(replayGeometry=COORDINATE, recoverGeometry=COORDINATE)

# Sets Working Directory *****************************************************************************

os.chdir(path)

# Load variables ************************************************************************************

execfile(’Var_rectangle.py’)

# Model/Job name and creation ************************************************************************

mdb.Model(modelType=STANDARD_EXPLICIT,name=model_name)

# Creates Rectangular Membrane ****************************************************************************

mdb.models[model_name].ConstrainedSketch(name=’profile’,sheetSize=200.0)

mdb.models[model_name].sketches[’profile’].rectangle(

point1=(-rect_width/2, rect_height/2), point2=(rect_width/2, -rect_height/2))

mdb.models[model_name].Part(dimensionality=THREE_D, name=’Rectangle’,type=DEFORMABLE_BODY)

mdb.models[model_name].parts[’Rectangle’].BaseShell(sketch=mdb.models[model_name].sketches[’profile’])

skin = mdb.models[model_name].parts[’Rectangle’]

# Materials ********************************************************************************

mdb.models[model_name].Material(name=’Skin Material’)

mdb.models[model_name].materials[’Skin Material’].Density(table=((skin_density,),))

mdb.models[model_name].materials[’Skin Material’].Elastic(table=((skin_modulus,skin_poisson),))

# Profiles & Section Assignments ***********************************************************

if membrane == 1:

mdb.models[model_name].MembraneSection(material=

’Skin Material’, name=’Skin Section’, poisson=skin_poisson,poissonDefinition=VALUE,

thickness=skin_thickness,thicknessField=’’,thicknessType=UNIFORM)

else:

mdb.models[model_name].HomogeneousShellSection(idealization=skin_section_idealization,

material=’Skin Material’,name=’Skin Section’,poisson=skin_poisson,poissonDefinition=VALUE,

preIntegrate=ON,thickness=skin_thickness,thicknessField=’’,thicknessModulus=None,

thicknessType=UNIFORM, useDensity=ON)

skin.SectionAssignment(offset=0.0,offsetField=’’,offsetType=skin_section_location,region=Region(

faces=skin.faces.findAt(((0,0,0),),)),sectionName=’Skin Section’,thicknessAssignment=FROM_SECTION)

# Assembly *********************************************************************************

mdb.models[model_name].rootAssembly.Instance(dependent=OFF,name=’Skin Instance’,part=skin)

skin_instance = mdb.models[model_name].rootAssembly.instances[’Skin Instance’]

root_assembly = mdb.models[model_name].rootAssembly

#Step **************************************************************************************

if stabilization == 1:

mdb.models[model_name].StaticStep(initialInc=initial_inc,maxInc=max_inc,

minInc=min_inc,maxNumInc=maxnuminc,name=stepname,nlgeom=nonlinear_effects,previous=’Initial’,

continueDampingFactors=False,adaptiveDampingRatio=stabilization_ratio,

stabilizationMagnitude=stabilization_magn,stabilizationMethod=DISSIPATED_ENERGY_FRACTION,

timeIncrementationMethod=increment_method)

elif step_type == 1:

mdb.models[model_name].StaticRiksStep(initialArcInc=initial_ArcInc,maxLPF=max_LPF,

minArcInc=min_ArcInc,maxArcInc=max_ArcInc,maxNumInc=maxnuminc,name=stepname,

nlgeom=nonlinear_effects,timeIncrementationMethod=increment_method,previous=’Initial’)

else:

mdb.models[model_name].StaticStep(initialInc=initial_inc,maxInc=max_inc,
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minInc=min_inc,maxNumInc=maxnuminc,name=stepname,nlgeom=nonlinear_effects,

timeIncrementationMethod=increment_method,previous=’Initial’)

#Pressure Load *****************************************************************************

mdb.models[model_name].Pressure(amplitude=UNSET,createStepName=stepname,

distributionType=UNIFORM,field=’’,magnitude=P,name=’Pressure Towards Center’,

region=Region(side1Faces=skin_instance.faces.findAt(((0,0,0),),)))

# BC ****************************************************************************************

if bc_type == 1:

mdb.models[model_name].DisplacementBC(amplitude=UNSET,createStepName=stepname,

distributionType=UNIFORM,fieldName=’’,fixed=OFF,localCsys=None,name=’BC-rotations allowed’,

region=Region(edges=skin_instance.edges.findAt(((rect_width/2,0,0),),((-rect_width/2,0,0),),

((0,rect_height/2,0),),((0,-rect_height/2,0),))),u1=0.0,u2=0.0,u3=0.0) ## rotations allowed

else:

mdb.models[model_name].DisplacementBC(amplitude=UNSET,createStepName=stepname,

distributionType=UNIFORM,fieldName=’’,fixed=OFF,localCsys=None,name=’BC-rotations allowed’,

region=Region(edges=skin_instance.edges.findAt(((rect_width/2,0,0),),((-rect_width/2,0,0),),

((0,rect_height/2,0),),((0,-rect_height/2,0),))),u1=0.0,u2=0.0,u3=0.0,ur1=0.0,ur2=0.0,ur3=0.0) ## encastre

# Mesh **************************************************************************************

# Seeding

mdb.models[model_name].rootAssembly.seedEdgeByNumber(constraint=FINER,edges=

skin_instance.edges.findAt(((rect_width/2,0,0),),((-rect_width/2,0,0),),

((0,rect_height/2,0),),((0,-rect_height/2,0),)),number=skin_seed_number) # seeding by edge

##root_assembly.seedPartInstance(deviationFactor=0.1, minSizeFactor=0.1,

## regions=(skin_instance,),size=skin_seed_number) # seeding by instance

# Element Shape

root_assembly.setMeshControls(elemShape=skin_element_shape,regions=

skin_instance.faces.findAt(((0,0,0),),))

# Element Type

mdb.models[model_name].rootAssembly.setElementType(elemTypes=(ElemType(elemCode=skin_element_type1,

elemLibrary=STANDARD),ElemType(elemCode=skin_element_type2,elemLibrary=STANDARD,

secondOrderAccuracy=OFF)),regions=(skin_instance.faces.findAt(((0,0,0),)),))

#Mesh Instance

mdb.models[model_name].rootAssembly.generateMesh(regions=(skin_instance,))

# Field Outputs ******************************************************************************************

if membrane == 1:

mdb.models[model_name].FieldOutputRequest(name=’Field-Output’,createStepName=stepname,

variables=(’S’,’U’))

else:

mdb.models[model_name].FieldOutputRequest(name=’Field-Output’,createStepName=stepname,

variables=(’S’,’U’),sectionPoints=(1,2,3))

del mdb.models[model_name].fieldOutputRequests[’F-Output-1’]

# Job ****************************************************************************************************

mdb.Job(atTime=None, contactPrint=OFF, description=’’,echoPrint=OFF,explicitPrecision=SINGLE,

getMemoryFromAnalysis=False,historyPrint=OFF,memory=memory_usage,memoryUnits=MEGA_BYTES,

model=model_name,modelPrint=OFF,multiprocessingMode=DEFAULT,name=job_name,nodalOutputPrecision=FULL,

numCpus=num_cores,numDomains=num_cores,numGPUs=num_GPUs,queue=None,scratch=’’,type=ANALYSIS,

userSubroutine=’’,waitHours=0, waitMinutes=0)

# Submission *********************************************************************************************

mdb.jobs[job_name].submit(consistencyChecking=OFF)
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mdb.jobs[job_name].waitForCompletion()

B.3 Triangular Model

# -*- coding: mbcs -*-

from part import*

from material import*

from section import*

from assembly import*

from step import*

from interaction import*

from load import*

from mesh import*

from job import*

from sketch import*

from visualization import*

from connectorBehavior import*

from odbAccess import *

from abaqusConstants import *

from odbMaterial import *

from odbSection import *

import os

session.journalOptions.setValues(replayGeometry=COORDINATE, recoverGeometry=COORDINATE)

# Sets Working Directory *****************************************************************************

os.chdir(path)

# Load variables ************************************************************************************

execfile(’Var_triangle.py’)

# Model/Job name and creation ************************************************************************

mdb.Model(modelType=STANDARD_EXPLICIT,name=model_name)

# Creates Skin ****************************************************************************

mdb.models[model_name].Part(dimensionality=THREE_D, name=’Skin’,type=DEFORMABLE_BODY)

skin=mdb.models[model_name].parts[’Skin’]

mdb.models[model_name].ConstrainedSketch(name=’__profile__’, sheetSize=2.0)

mdb.models[model_name].sketches[’__profile__’]

skin.WirePolyLine(mergeWire=ON,meshable=ON, points=((p1,p2),(p1,p3),(p2,p3)))

e12=skin.edges.findAt(mp12); e13=skin.edges.findAt(mp13); e23=skin.edges.findAt(mp23)

skin.CoverEdges((e12,e13,e23),tryAnalytical=True)

# Materials ********************************************************************************

mdb.models[model_name].Material(name=’Skin Material’)

mdb.models[model_name].materials[’Skin Material’].Density(table=((skin_density,),))

mdb.models[model_name].materials[’Skin Material’].Elastic(table=((skin_modulus,skin_poisson),))

# Profiles & Section Assignments ***********************************************************

if membrane == 1:

mdb.models[model_name].MembraneSection(material=

’Skin Material’, name=’Skin Section’, poisson=skin_poisson,poissonDefinition=VALUE,

thickness=skin_thickness,thicknessField=’’,thicknessType=UNIFORM)

else:

mdb.models[model_name].HomogeneousShellSection(idealization=skin_section_idealization,
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material=’Skin Material’,name=’Skin Section’,poisson=skin_poisson,poissonDefinition=VALUE,

preIntegrate=ON,thickness=skin_thickness,thicknessField=’’,thicknessModulus=None,

thicknessType=UNIFORM, useDensity=ON)

skin.SectionAssignment(offset=0.0,offsetField=’’,offsetType=skin_section_location,region=Region(

faces=skin.faces.findAt((fc123,),)),sectionName=’Skin Section’,thicknessAssignment=FROM_SECTION)

# Assembly *********************************************************************************

mdb.models[model_name].rootAssembly.Instance(dependent=OFF,name=’Skin Instance’,part=skin)

skin_instance = mdb.models[model_name].rootAssembly.instances[’Skin Instance’]

root_assembly = mdb.models[model_name].rootAssembly

#Step **************************************************************************************

if stabilization == 1:

mdb.models[model_name].StaticStep(initialInc=initial_inc,maxInc=max_inc,

minInc=min_inc,maxNumInc=maxnuminc,name=stepname,nlgeom=nonlinear_effects,previous=’Initial’,

continueDampingFactors=False,adaptiveDampingRatio=stabilization_ratio,

stabilizationMagnitude=stabilization_magn,stabilizationMethod=DISSIPATED_ENERGY_FRACTION)

elif step_type == 1:

mdb.models[model_name].StaticRiksStep(initialArcInc=initial_ArcInc,maxLPF=max_LPF,

minArcInc=min_ArcInc,maxArcInc=max_ArcInc,maxNumInc=maxnuminc,name=stepname,

nlgeom=nonlinear_effects,previous=’Initial’)

else:

mdb.models[model_name].StaticStep(initialInc=initial_inc,maxInc=max_inc,

minInc=min_inc,maxNumInc=maxnuminc,name=stepname,nlgeom=nonlinear_effects,previous=’Initial’)

#Pressure Load *****************************************************************************

mdb.models[model_name].Pressure(amplitude=UNSET,createStepName=stepname,

distributionType=UNIFORM,field=’’,magnitude=P,name=’Pressure Towards Center’,

region=Region(side2Faces=skin_instance.faces.findAt((fc123,),)))

# BC ****************************************************************************************

if bc_type == 1:

mdb.models[model_name].DisplacementBC(amplitude=UNSET,createStepName=stepname,

distributionType=UNIFORM,fieldName=’’,fixed=OFF,localCsys=None,name=’BC-rotations allowed’,

region=Region(edges=skin_instance.edges.findAt((mp12,),(mp13,),(mp23,),)),

u1=0.0,u2=0.0,u3=0.0) ## rotations allowed

else:

mdb.models[model_name].DisplacementBC(amplitude=UNSET,createStepName=stepname,

distributionType=UNIFORM,fieldName=’’,fixed=OFF,localCsys=None,name=’BC-encastre’,

region=Region(edges=skin_instance.edges.findAt((mp12,),(mp13,),(mp23,),)),

u1=0.0,u2=0.0,u3=0.0,ur1=0.0,ur2=0.0,ur3=0.0) ## encastre

# Mesh **************************************************************************************

# Seeding

mdb.models[model_name].rootAssembly.seedEdgeByNumber(constraint=FINER,edges=

skin_instance.edges.findAt((mp12,),(mp13,),(mp23,),),number=skin_seed_number) # seeding by edge

##root_assembly.seedPartInstance(deviationFactor=0.1, minSizeFactor=0.1,

## regions=(skin_instance,),size=skin_seed_number) # seeding by instance

# Element Shape

root_assembly.setMeshControls(elemShape=skin_element_shape,regions=

skin_instance.faces.findAt((fc123,),))

# Element Type

mdb.models[model_name].rootAssembly.setElementType(elemTypes=(ElemType(elemCode=skin_element_type1,

elemLibrary=STANDARD),ElemType(elemCode=skin_element_type2,elemLibrary=STANDARD,

secondOrderAccuracy=OFF)),regions=(skin_instance.faces.findAt((fc123,)),))
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#Mesh Instance

mdb.models[model_name].rootAssembly.generateMesh(regions=(skin_instance,))

# Field Outputs ******************************************************************************************

if membrane == 1:

mdb.models[model_name].FieldOutputRequest(name=’Field-Output’,createStepName=stepname,

variables=(’S’,’U’))

else:

mdb.models[model_name].FieldOutputRequest(name=’Field-Output’,createStepName=stepname,

variables=(’S’,’U’),sectionPoints=(1,2,3))

del mdb.models[model_name].fieldOutputRequests[’F-Output-1’]

# Job ****************************************************************************************************

mdb.Job(atTime=None, contactPrint=OFF, description=’’,echoPrint=OFF,explicitPrecision=SINGLE,

getMemoryFromAnalysis=False,historyPrint=OFF,memory=memory_usage,memoryUnits=MEGA_BYTES,

model=model_name,modelPrint=OFF,multiprocessingMode=DEFAULT,name=job_name,nodalOutputPrecision=FULL,

numCpus=num_cores,numDomains=num_cores,numGPUs=num_GPUs,queue=None,scratch=’’,type=ANALYSIS,

userSubroutine=’’,waitHours=0, waitMinutes=0)

# Submission *********************************************************************************************

mdb.jobs[job_name].submit(consistencyChecking=OFF)

mdb.jobs[job_name].waitForCompletion()

B.4 Frame Standalone Model

# -*- coding: mbcs -*-

import os

from part import*

from material import*

from section import*

from assembly import*

from step import*

from interaction import*

from load import*

from mesh import*

from job import*

from sketch import*

from visualization import*

from connectorBehavior import*

from odbAccess import *

from abaqusConstants import *

from odbMaterial import *

from odbSection import *

session.journalOptions.setValues(replayGeometry=COORDINATE, recoverGeometry=COORDINATE)

# Sets Working Directory *************************************************************************

os.chdir(path)

# Load variables *************************************************************************

execfile(’Var_frame.py’)

# Model name and creation ************************************************************************

mdb.Model(modelType=STANDARD_EXPLICIT, name=model_name)
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# Creates Frame **************************************************************************

mdb.models[model_name].Part(dimensionality=THREE_D, name=’Frame’,type=DEFORMABLE_BODY)

frame=mdb.models[model_name].parts[’Frame’]

frame.DatumPointByCoordinate(p1); frame.DatumPointByCoordinate(p2)

frame.DatumPointByCoordinate(p3); frame.DatumPointByCoordinate(p4)

frame.DatumPointByCoordinate(p5); frame.DatumPointByCoordinate(p6)

frame.DatumPointByCoordinate(p7); frame.DatumPointByCoordinate(p8)

frame.DatumPointByCoordinate(p9); frame.DatumPointByCoordinate(p10)

frame.DatumPointByCoordinate(p11); frame.DatumPointByCoordinate(p12)

mdb.models[model_name].ConstrainedSketch(name=’__profile__’, sheetSize=2.0)

mdb.models[model_name].sketches[’__profile__’]

frame.WirePolyLine(mergeWire=ON, meshable=ON, points=(

(p1,p2),(p1,p3),(p1,p4),(p1,p5),(p1,p6),(p2,p3),(p3,p4),(p4,p5),(p5,p6),(p6,p2),

(p12,p11),(p12,p10),(p12,p9),(p12,p8),(p12,p7),(p7,p8),(p8,p9),(p9,p10),(p10,p11),

(p11,p7),(p2,p11),(p2,p7),(p3,p8),(p3,p7),(p4,p8),(p4,p9),(p5,p9),(p5,p10),(p6,p10),(p6,p11)))

# Materials ********************************************************************************

mdb.models[model_name].Material(name=’Frame Material’)

mdb.models[model_name].materials[’Frame Material’].Density(table=((frame_density,),))

mdb.models[model_name].materials[’Frame Material’].Elastic(table=((frame_modulus,frame_poisson),))

# Profiles & Section Assignments ***********************************************************

frame_edges=frame.edges.findAt((mp12,),(mp13,),(mp14,),(mp15,),(mp16,),(mp23,),(mp34,),(mp45,),

(mp56,),(mp62,),(mp127,),(mp128,),(mp129,),(mp1210,),(mp1211,),

(mp78,),(mp89,),(mp910,),(mp1011,),(mp711,),(mp211,),(mp27,),

(mp711,),(mp116,),(mp610,),(mp1011,),(mp105,),(mp56,),(mp59,),

(mp94,),(mp73,),(mp38,),(mp84,),)

# Frame

if hollow_profile == 1:

mdb.models[model_name].PipeProfile(name=’Frame Beam Profile’, r=frame_beam_radius, t=frame_beam_thickness)

else:

mdb.models[model_name].CircularProfile(name=’Frame Beam Profile’, r=frame_beam_radius)

mdb.models[model_name].BeamSection(integration=DURING_ANALYSIS,material=’Frame Material’,name=’Frame Beam Section’,

poissonRatio=frame_poisson, profile=’Frame Beam Profile’,temperatureVar=LINEAR)

frame.SectionAssignment(offset=0.0,offsetField=’’,offsetType=MIDDLE_SURFACE,region=Region(

edges=frame_edges),sectionName=’Frame Beam Section’,thicknessAssignment=FROM_SECTION)

frame.assignBeamSectionOrientation(method=N1_COSINES,n1=(0.0, 0.0, -1.0),region=Region(edges=frame_edges))

# Assembly *********************************************************************************

mdb.models[model_name].rootAssembly.Instance(dependent=OFF,name=’Frame Instance’,part=frame)

frame_instance = mdb.models[model_name].rootAssembly.instances[’Frame Instance’]

root_assembly = mdb.models[model_name].rootAssembly

frame_edges_instance=frame_instance.edges.findAt((mp12,),(mp13,),(mp14,),(mp15,),(mp16,),(mp23,),(mp34,),(mp45,),

(mp56,),(mp62,),(mp127,),(mp128,),(mp129,),(mp1210,),(mp1211,),

(mp78,),(mp89,),(mp910,),(mp1011,),(mp711,),(mp211,),(mp27,),

(mp711,),(mp116,),(mp610,),(mp1011,),(mp105,),(mp56,),(mp59,),

(mp94,),(mp73,),(mp38,),(mp84,),)

# Spherical System *******************************************************************************

spherical_id = root_assembly.DatumCsysByThreePoints(coordSysType=SPHERICAL,name=’Spherical’,

origin=(0.0,0.0,0.0),point1=(1.0,0.0,0.0),point2=(0.0,1.0,0.0)).id

#Step **************************************************************************************

if buckle == 1:

171



mdb.models[model_name].BuckleStep(maxIterations=buck_max_Iter,name=stepname,

numEigen=buck_num_Eigen,previous=’Initial’,vectors=buck_num_vectors)

elif stabilization == 1:

mdb.models[model_name].StaticStep(initialInc=initial_inc,maxInc=max_inc,

minInc=min_inc,maxNumInc=maxnuminc,name=stepname,nlgeom=nonlinear_effects,previous=’Initial’,

continueDampingFactors=False,adaptiveDampingRatio=stabilization_ratio,matrixStorage=UNSYMMETRIC,

stabilizationMagnitude=stabilization_magn,stabilizationMethod=DISSIPATED_ENERGY_FRACTION,

timeIncrementationMethod=increment_method)

elif step_type == 1:

mdb.models[model_name].StaticRiksStep(initialArcInc=initial_ArcInc,maxLPF=max_LPF,

minArcInc=min_ArcInc,maxArcInc=max_ArcInc,maxNumInc=maxnuminc,name=stepname,matrixStorage=UNSYMMETRIC,

nlgeom=nonlinear_effects,timeIncrementationMethod=increment_method,previous=’Initial’)

else:

mdb.models[model_name].StaticStep(initialInc=initial_inc,maxInc=max_inc,

minInc=min_inc,maxNumInc=maxnuminc,name=stepname,nlgeom=nonlinear_effects,

timeIncrementationMethod=increment_method,previous=’Initial’)

if buckle == 1:

buckle = 1

else:

mdb.models[model_name].steps[stepname].control.setValues(

allowPropagation=OFF, discontinuous=ON, displacementField=(0.005, 0.01,

0.0, 0.0, 0.02, 1e-05, 0.001, 1e-08, 1.0, 1e-05, 1e-12),

hydrostaticFluidPressureField=(0.005, 0.01, 0.0, 0.0, 0.02, 1e-05, 0.001,

1e-08, 1.0, 1e-05), lineSearch=(10.0, 1.0, 0.0001, 0.25, 0.01),

resetDefaultValues=OFF, rotationField=(0.005, 0.01, 0.0, 0.0, 0.02, 1e-05,

0.001, 1e-08, 1.0, 1e-05), timeIncrementation=(8.0, 10.0, 9.0, 16.0, 10.0,

4.0, 12.0, 20.0, 6.0, 3.0, 50.0, 0.5, 0.5, 0.75, 0.85, 0.25, 0.25, 1.5,

0.75))

#BC ****************************************************************************************

mdb.models[model_name].DisplacementBC(amplitude=UNSET,createStepName=

stepname,distributionType=UNIFORM,fieldName=’’,fixed=OFF,localCsys=None,name=’BCbottom’,

region=Region(vertices=frame_instance.vertices.findAt((p12,),)),

u1=0.0,u2=0.0,u3=0.0,ur1=0.0,ur2=0.0,ur3=0.0) ## Bottom BC (all DOFs)

mdb.models[model_name].DisplacementBC(amplitude=UNSET,createStepName=

stepname,distributionType=UNIFORM,fieldName=’’,fixed=OFF,localCsys=None,name=’BCtop’,

region=Region(vertices=frame_instance.vertices.findAt((p1,),)),u1=0.0,u2=0.0) ## Bottom BC (u1=u2=0)

# Mesh **************************************************************************************

# Beam

mdb.models[model_name].rootAssembly.seedEdgeByNumber(constraint=FINER,

edges=frame_edges_instance,number=frame_seed_number)

mdb.models[model_name].rootAssembly.setElementType(elemTypes=(ElemType(

elemCode=frame_element_type,elemLibrary=STANDARD),),regions=(frame_edges_instance,))

#Meshes Instances

mdb.models[model_name].rootAssembly.generateMesh(regions=(frame_instance,))

# Coupling Constraints and Forces *******************************************************************************

mp = [mp12,mp13,mp23, mp13,mp14,mp34, mp14,mp15,mp45, mp15,mp16,mp56, mp16,mp12,mp62, mp127,mp128,mp78,

mp128,mp129,mp89, mp129,mp1210,mp910, mp1210,mp1211,mp1110,mp127,mp1211,mp711,mp211,mp27,mp711,

mp112,mp116,mp26, mp610,mp611,mp1011, mp105,mp106,mp56, mp59,mp510,mp910, mp94,mp95,mp45,

mp48,mp49,mp89, mp83,mp84,mp34, mp37,mp38,mp78, mp72,mp73,mp23]

fc1 = [fc123,fc134,fc145,fc156,fc162,fc1278,fc1289,fc12910,fc121011,fc12117,fc2711,fc1126,fc61011,

fc1056,fc5910,fc945,fc489,fc834,fc378,fc723]

r = p1[2]
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el = r*sqrt(50-10*sqrt(5))/5

A = el**2*sqrt(3)/4

F = P*A

g = 0;

for i in range(0,20):

# Creates Reference Points

root_assembly.ReferencePoint(point=fc1[i])

# Creates Sets for Coupling using Reference Points

set1 = root_assembly.Set(name=’CouplingSet’+str(i), referencePoints=(

root_assembly.referencePoints.findAt(fc1[i]),))

# Create Surfaces for Coupling using Frame and Skin Edges

ed = frame_instance.edges.findAt((mp[g],),(mp[g+1],),(mp[g+2],),)

set2 = mdb.models[model_name].rootAssembly.Surface(circumEdges=ed, name=’FrameSet’+str(i))

# Coupling Constraints

mdb.models[model_name].Coupling(controlPoint=set1,couplingType=DISTRIBUTING,

influenceRadius=WHOLE_SURFACE, localCsys=None, name=’CoupConstraint’+str(i),

surface=set2, u1=ON, u2=ON, u3=ON, ur1=OFF, ur2=OFF, ur3=OFF, weightingMethod=UNIFORM)

g = g + 3

# Load or BC

if disp_control == 1:

mdb.models[model_name].DisplacementBC(amplitude=UNSET,createStepName=

stepname,distributionType=UNIFORM,fieldName=’’,fixed=OFF,

localCsys=root_assembly.datums[spherical_id],name=’BC Disp Controlled’+str(i),

region=set1,u1=d)

else:

mdb.models[model_name].ConcentratedForce(cf1=-F,createStepName=stepname,

distributionType=UNIFORM,field=’’, localCsys=root_assembly.datums[spherical_id],name=’Load’+str(i),region=set1)

# Field Outputs ******************************************************************************************

if buckle == 1:

mdb.models[model_name].FieldOutputRequest(name=’FO-WholeModel’,createStepName=stepname,

variables=(’U’,’S’))

else:

mdb.models[model_name].FieldOutputRequest(name=’FO-WholeModel’,createStepName=stepname,

variables=(’U’,’S’,’NFORC’,’E’,’P’,’RF’))

del mdb.models[model_name].fieldOutputRequests[’F-Output-1’]

# Job ****************************************************************************************************

mdb.Job(atTime=None, contactPrint=OFF, description=’’,echoPrint=OFF,explicitPrecision=SINGLE,

getMemoryFromAnalysis=False,historyPrint=OFF,memory=memory_usage,memoryUnits=MEGA_BYTES,

model=model_name,modelPrint=OFF,multiprocessingMode=DEFAULT,name=job_name,nodalOutputPrecision=FULL,

numCpus=num_cores,numDomains=num_cores,numGPUs=num_GPUs,queue=None,scratch=’’,type=ANALYSIS,

userSubroutine=’’,waitHours=0, waitMinutes=0)

# Submission *********************************************************************************************

mdb.jobs[job_name].submit(consistencyChecking=OFF)

mdb.jobs[job_name].waitForCompletion()

B.5 Icosahedron

# -*- coding: mbcs -*-

import os

from part import*

from material import*

173



from section import*

from assembly import*

from step import*

from interaction import*

from load import*

from mesh import*

from job import*

from sketch import*

from visualization import*

from connectorBehavior import*

from odbAccess import *

from abaqusConstants import *

from odbMaterial import *

from odbSection import *

session.journalOptions.setValues(replayGeometry=COORDINATE, recoverGeometry=COORDINATE)

# Sets Working Directory *************************************************************************

os.chdir(path)

# Load variables *************************************************************************

execfile(’Var_icosahedron.py’)

# Model name and creation ************************************************************************

mdb.Model(modelType=STANDARD_EXPLICIT, name=model_name)

# Creates Frame **************************************************************************

mdb.models[model_name].Part(dimensionality=THREE_D, name=’Frame’,type=DEFORMABLE_BODY)

frame=mdb.models[model_name].parts[’Frame’]

frame.DatumPointByCoordinate(p1); frame.DatumPointByCoordinate(p2)

frame.DatumPointByCoordinate(p3); frame.DatumPointByCoordinate(p4)

frame.DatumPointByCoordinate(p5); frame.DatumPointByCoordinate(p6)

frame.DatumPointByCoordinate(p7); frame.DatumPointByCoordinate(p8)

frame.DatumPointByCoordinate(p9); frame.DatumPointByCoordinate(p10)

frame.DatumPointByCoordinate(p11); frame.DatumPointByCoordinate(p12)

mdb.models[model_name].ConstrainedSketch(name=’__profile__’, sheetSize=2.0)

mdb.models[model_name].sketches[’__profile__’]

frame.WirePolyLine(mergeWire=ON, meshable=ON, points=(

(p1,p2),(p1,p3),(p1,p4),(p1,p5),(p1,p6),(p2,p3),(p3,p4),(p4,p5),(p5,p6),(p6,p2),

(p12,p11),(p12,p10),(p12,p9),(p12,p8),(p12,p7),(p7,p8),(p8,p9),(p9,p10),(p10,p11),

(p11,p7),(p2,p11),(p2,p7),(p3,p8),(p3,p7),(p4,p8),(p4,p9),(p5,p9),(p5,p10),(p6,p10),(p6,p11)))

# Creates Skin ***************************************************************************

mdb.models[model_name].Part(dimensionality=THREE_D, name=’Skin’, type=DEFORMABLE_BODY)

skin=mdb.models[model_name].parts[’Skin’]

mdb.models[model_name].ConstrainedSketch(name=’__profile__’, sheetSize=2.0)

mdb.models[model_name].sketches[’__profile__’]

skin.WirePolyLine(mergeWire=ON,meshable=ON, points=((p1,p2),(p1,p3),(

p2,p3)))

e12=skin.edges.findAt(mp12); e13=skin.edges.findAt(mp13); e23=skin.edges.findAt(mp23)

skin.CoverEdges((e12,e13,e23), tryAnalytical=True)

skin.WirePolyLine(mergeWire=ON,meshable=ON, points=((p1,p3),(p1,p4),(

p3,p4)))

e13=skin.edges.findAt(mp13); e14=skin.edges.findAt(mp14); e34=skin.edges.findAt(mp34)

skin.CoverEdges((e13,e14,e34), tryAnalytical=True)
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skin.WirePolyLine(mergeWire=ON,meshable=ON, points=((p1,p4),(p1,p5),(

p4,p5)))

e14=skin.edges.findAt(mp14); e15=skin.edges.findAt(mp15); e45=skin.edges.findAt(mp45)

skin.CoverEdges((e14,e15,e45), tryAnalytical=True)

skin.WirePolyLine(mergeWire=ON,meshable=ON, points=((p1,p5),(p1,p6),(

p5,p6)))

e15=skin.edges.findAt(mp15); e16=skin.edges.findAt(mp16); e56=skin.edges.findAt(mp56)

skin.CoverEdges((e15,e16,e56), tryAnalytical=True)

skin.WirePolyLine(mergeWire=ON,meshable=ON, points=((p1,p6),(p1,p2),(

p6,p2)))

e16=skin.edges.findAt(mp16); e12=skin.edges.findAt(mp12); e62=skin.edges.findAt(mp62)

skin.CoverEdges((e16,e12,e62), tryAnalytical=True)

skin.WirePolyLine(mergeWire=ON,meshable=ON, points=((p12,p7),(p12,p8),(

p7,p8)))

e127=skin.edges.findAt(mp127); e128=skin.edges.findAt(mp128); e78=skin.edges.findAt(mp78)

skin.CoverEdges((e127,e128,e78), tryAnalytical=True)

skin.WirePolyLine(mergeWire=ON,meshable=ON, points=((p12,p8),(p12,p9),(

p8,p9)))

e128=skin.edges.findAt(mp128); e129=skin.edges.findAt(mp129); e89=skin.edges.findAt(mp89)

skin.CoverEdges((e128,e129,e89), tryAnalytical=True)

skin.WirePolyLine(mergeWire=ON,meshable=ON, points=((p12,p9),(p12,p10),(

p9,p10)))

e129=skin.edges.findAt(mp129); e1210=skin.edges.findAt(mp1210); e910=skin.edges.findAt(mp910)

skin.CoverEdges((e129,e1210,e910), tryAnalytical=True)

skin.WirePolyLine(mergeWire=ON,meshable=ON, points=((p12,p10),(p12,p11),(

p11,p10)))

e1210=skin.edges.findAt(mp1210); e1211=skin.edges.findAt(mp1211); e1110=skin.edges.findAt(mp1110)

skin.CoverEdges((e1210,e1211,e1110), tryAnalytical=True)

skin.WirePolyLine(mergeWire=ON,meshable=ON, points=((p12,p7),(p12,p11),(

p7,p11)))

e127=skin.edges.findAt(mp127); e1211=skin.edges.findAt(mp1211); e711=skin.edges.findAt(mp711)

skin.CoverEdges((e127,e1211,e711), tryAnalytical=True)

skin.WirePolyLine(mergeWire=ON,meshable=ON, points=((p2,p11),(p2,p7),(

p7,p11)))

e211=skin.edges.findAt(mp211); e27=skin.edges.findAt(mp27); e711=skin.edges.findAt(mp711)

skin.CoverEdges((e211,e27,e711), tryAnalytical=True)

skin.WirePolyLine(mergeWire=ON,meshable=ON, points=((p11,p2),(p11,p6),(

p2,p6)))

e112=skin.edges.findAt(mp112); e116=skin.edges.findAt(mp116); e26=skin.edges.findAt(mp26)

skin.CoverEdges((e112,e116,e26), tryAnalytical=True)

skin.WirePolyLine(mergeWire=ON,meshable=ON, points=((p6,p10),(p6,p11),(

p10,p11)))

e610=skin.edges.findAt(mp610); e611=skin.edges.findAt(mp611); e1011=skin.edges.findAt(mp1011)

skin.CoverEdges((e610,e611,e1011), tryAnalytical=True)

skin.WirePolyLine(mergeWire=ON,meshable=ON, points=((p10,p5),(p10,p6),(

p5,p6)))

e105=skin.edges.findAt(mp105); e106=skin.edges.findAt(mp106); e56=skin.edges.findAt(mp56)
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skin.CoverEdges((e105,e106,e56), tryAnalytical=True)

skin.WirePolyLine(mergeWire=ON,meshable=ON, points=((p5,p9),(p5,p10),(

p9,p10)))

e59=skin.edges.findAt(mp59); e510=skin.edges.findAt(mp510); e910=skin.edges.findAt(mp910)

skin.CoverEdges((e59,e510,e910), tryAnalytical=True)

skin.WirePolyLine(mergeWire=ON,meshable=ON, points=((p9,p4),(p9,p5),(

p4,p5)))

e94=skin.edges.findAt(mp94); e95=skin.edges.findAt(mp95); e45=skin.edges.findAt(mp45)

skin.CoverEdges((e94,e95,e45), tryAnalytical=True)

skin.WirePolyLine(mergeWire=ON,meshable=ON, points=((p4,p8),(p4,p9),(

p8,p9)))

e48=skin.edges.findAt(mp48); e49=skin.edges.findAt(mp49); e89=skin.edges.findAt(mp89)

skin.CoverEdges((e48,e49,e89), tryAnalytical=True)

skin.WirePolyLine(mergeWire=ON,meshable=ON, points=((p8,p3),(p8,p4),(

p3,p4)))

e83=skin.edges.findAt(mp83); e84=skin.edges.findAt(mp84); e34=skin.edges.findAt(mp34)

skin.CoverEdges((e83,e84,e34), tryAnalytical=True)

skin.WirePolyLine(mergeWire=ON,meshable=ON, points=((p3,p7),(p3,p8),(

p7,p8)))

e37=skin.edges.findAt(mp37); e38=skin.edges.findAt(mp38); e78=skin.edges.findAt(mp78)

skin.CoverEdges((e37,e38,e78), tryAnalytical=True)

skin.WirePolyLine(mergeWire=ON,meshable=ON, points=((p7,p2),(p7,p3),(

p2,p3)))

e72=skin.edges.findAt(mp72); e73=skin.edges.findAt(mp73); e23=skin.edges.findAt(mp23)

skin.CoverEdges((e72,e73,e23), tryAnalytical=True)

# Creates stiffners **********************************************************************

if stiff_select == 1:

for i in range(0,len(k)):

frame.DatumPointByCoordinate(fc[i])

frame.WirePolyLine(mergeWire=ON,meshable=ON,

points=((p_array[k[i][0]-1],fc[i]),(p_array[k[i][1]-1],fc[i]),(p_array[k[i][2]-1],

fc[i])))

# Creates Center Rays **********************************************************************

if rays_select == 1:

mdb.models[model_name].Part(dimensionality=THREE_D, name=’Rays’, type=DEFORMABLE_BODY)

rays=mdb.models[model_name].parts[’Rays’]

fc = [(fc123),(fc134),(fc145),(fc156),(fc162),(fc1278),(fc1289),

(fc12910),(fc121011),(fc12117),(fc723),(fc378),(fc834),

(fc489),(fc945),(fc5910),(fc1056),(fc61011),(fc1126),(fc2711)]

c = (0,0,0)

rays.DatumPointByCoordinate(c)

for i in range(0,len(fc)):

rays.DatumPointByCoordinate(fc[i]);

rays.WirePolyLine(mergeWire=ON,meshable=ON,points=((c,fc[i])))

# Materials ********************************************************************************

mdb.models[model_name].Material(name=’Frame Material’)

mdb.models[model_name].materials[’Frame Material’].Density(table=((frame_density,),))

mdb.models[model_name].materials[’Frame Material’].Elastic(table=((frame_modulus,frame_poisson),))

mdb.models[model_name].Material(name=’Skin Material’)
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mdb.models[model_name].materials[’Skin Material’].Density(table=((skin_density,),))

mdb.models[model_name].materials[’Skin Material’].Elastic(table=((skin_modulus,skin_poisson),))

mdb.models[model_name].Material(name=’Rays Material’)

mdb.models[model_name].materials[’Rays Material’].Density(table=((rays_density,),))

mdb.models[model_name].materials[’Rays Material’].Elastic(table=((rays_modulus,rays_poisson),))

mdb.models[model_name].Material(name=’Stiffners Material’)

mdb.models[model_name].materials[’Stiffners Material’].Density(table=((stiff_density,),))

mdb.models[model_name].materials[’Stiffners Material’].Elastic(table=((stiff_modulus,stiff_poisson),))

# Profiles & Section Assignments ***********************************************************

skin_faces=skin.faces.findAt((fc123,),(fc134,),(fc145,),(fc156,),(fc162,),(fc1278,),(fc1289,),

(fc12910,),(fc121011,),(fc12117,),(fc723,),(fc378,),(fc834,),

(fc489,),(fc945,),(fc5910,),(fc1056,),(fc61011,),(fc1126,),(fc2711,),)

frame_edges=frame.edges.findAt((mp12,),(mp13,),(mp14,),(mp15,),(mp16,),(mp23,),(mp34,),(mp45,),

(mp56,),(mp62,),(mp127,),(mp128,),(mp129,),(mp1210,),(mp1211,),

(mp78,),(mp89,),(mp910,),(mp1011,),(mp711,),(mp211,),(mp27,),

(mp711,),(mp116,),(mp610,),(mp1011,),(mp105,),(mp56,),(mp59,),

(mp94,),(mp73,),(mp38,),(mp84,),)

# Frame

if hollow_profile == 1:

mdb.models[model_name].PipeProfile(name=’Frame Beam Profile’, r=frame_beam_radius,

t=frame_beam_thickness)

else:

mdb.models[model_name].CircularProfile(name=’Frame Beam Profile’, r=frame_beam_radius)

mdb.models[model_name].BeamSection(integration=DURING_ANALYSIS,material=’Frame Material’,

name=’Frame Beam Section’,

poissonRatio=frame_poisson, profile=’Frame Beam Profile’,temperatureVar=LINEAR)

frame.SectionAssignment(offset=0.0,offsetField=’’,offsetType=MIDDLE_SURFACE,region=Region(

edges=frame_edges),sectionName=’Frame Beam Section’,thicknessAssignment=FROM_SECTION)

frame.assignBeamSectionOrientation(method=N1_COSINES,n1=(0.0, 0.0, -1.0),region=

Region(edges=frame_edges))

# Skin

if no_stiffness_skin == 1:

mdb.models[model_name].SurfaceSection(density=skin_density,name=’Skin Section’,useDensity=ON)

elif membrane == 1:

mdb.models[model_name].MembraneSection(material=

’Skin Material’, name=’Skin Section’, poisson=skin_poisson,poissonDefinition=VALUE,

thickness=skin_thickness,thicknessField=’’,thicknessType=UNIFORM)

else:

mdb.models[model_name].HomogeneousShellSection(idealization=skin_section_idealization,

material=’Skin Material’,name=’Skin Section’,poisson=skin_poisson,poissonDefinition=VALUE,

preIntegrate=ON,thickness=skin_thickness,thicknessField=’’,thicknessModulus=None,

thicknessType=UNIFORM, useDensity=ON)

skin.SectionAssignment(offset=0.0,offsetField=’’,offsetType=skin_section_location,region=Region(

faces=skin_faces),sectionName=’Skin Section’,thicknessAssignment=FROM_SECTION)

# Rays

if rays_select == 1:

rays_edges=rays.edges.findAt((fc123,),(fc134,),(fc145,),(fc156,),(fc162,),(fc1278,),(fc1289,),

(fc12910,),(fc121011,),(fc12117,),(fc723,),(fc378,),(fc834,),

(fc489,),(fc945,),(fc5910,),(fc1056,),(fc61011,),(fc1126,),(fc2711,),)

if hollow_profile_rays == 1:

mdb.models[model_name].PipeProfile(name=’Rays Beam Profile’, r=rays_beam_radius,

t=rays_beam_thickness)
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else:

mdb.models[model_name].CircularProfile(name=’Rays Beam Profile’, r=rays_beam_radius)

mdb.models[model_name].BeamSection(integration=DURING_ANALYSIS,material=’Rays Material’,

name=’Rays Beam Section’,

poissonRatio=rays_poisson, profile=’Rays Beam Profile’,temperatureVar=LINEAR)

rays.SectionAssignment(offset=0.0,offsetField=’’,offsetType=MIDDLE_SURFACE,region=Region(

edges=rays_edges),sectionName=’Rays Beam Section’,thicknessAssignment=FROM_SECTION)

rays.assignBeamSectionOrientation(method=N1_COSINES,n1=(0.0, 0.0, -1.0),region=

Region(edges=rays_edges))

# Stiffners

if stiff_select == 1:

stiff_edges=frame.edges.findAt((np[0],),(np[1],),(np[2],),(np[3],),(np[4],),(np[5],),

(np[6],),(np[7],),(np[8],),(np[9],),(np[10],),

(np[11],),(np[12],),(np[13],),(np[14],),(np[15],),(np[16],),(np[17],),(np[18],),

(np[19],),(np[20],),

(np[21],),(np[22],),(np[23],),(np[24],),(np[25],),(np[26],),(np[27],),(np[28],),

(np[29],),(np[30],),

(np[31],),(np[32],),(np[33],),(np[34],),(np[35],),(np[36],),(np[37],),(np[38],),

(np[39],),(np[40],),

(np[41],),(np[42],),(np[43],),(np[44],),(np[45],),(np[46],),(np[47],),(np[48],),

(np[49],),(np[50],),

(np[51],),(np[52],),(np[53],),(np[54],),(np[55],),(np[56],),(np[57],),(np[58],),

(np[59],),)

if hollow_profile_stiff == 1:

mdb.models[model_name].PipeProfile(name=’Stiffners Beam Profile’, r=stiff_beam_radius,

t=stiff_beam_thickness)

else:

mdb.models[model_name].CircularProfile(name=’Stiffners Beam Profile’, r=stiff_beam_radius)

mdb.models[model_name].BeamSection(integration=DURING_ANALYSIS,material=’Stiffners Material’,

name=’Stiffners Beam Section’,

poissonRatio=rays_poisson, profile=’Stiffners Beam Profile’,temperatureVar=LINEAR)

frame.SectionAssignment(offset=0.0,offsetField=’’,offsetType=MIDDLE_SURFACE,region=Region(

edges=stiff_edges),sectionName=’Stiffners Beam Section’,thicknessAssignment=FROM_SECTION)

frame.assignBeamSectionOrientation(method=N1_COSINES,n1=(0.0, 0.0, -1.0),region=

Region(edges=stiff_edges))

# Assembly *********************************************************************************

mdb.models[model_name].rootAssembly.DatumCsysByDefault(CARTESIAN)

mdb.models[model_name].rootAssembly.Instance(dependent=OFF,name=’Frame Instance’,part=frame)

mdb.models[model_name].rootAssembly.Instance(dependent=OFF,name=’Skin Instance’,part=skin)

frame_instance = mdb.models[model_name].rootAssembly.instances[’Frame Instance’]

skin_instance = mdb.models[model_name].rootAssembly.instances[’Skin Instance’]

root_assembly = mdb.models[model_name].rootAssembly

if rays_select == 1:

mdb.models[model_name].rootAssembly.Instance(dependent=OFF,name=’Rays Instance’,part=rays)

rays_instance = mdb.models[model_name].rootAssembly.instances[’Rays Instance’]

skin_faces_instance=skin_instance.faces.findAt((fc123,),(fc134,),(fc145,),(fc156,),

(fc162,),(fc1278,),(fc1289,),

(fc12910,),(fc121011,),(fc12117,),(fc723,),(fc378,),(fc834,),

(fc489,),(fc945,),(fc5910,),(fc1056,),(fc61011,),(fc1126,),(fc2711,))

skin_edges_instance= skin_instance.edges.findAt((mp12,),(mp13,),(mp14,),

(mp15,),(mp16,),(mp23,),(mp34,),(mp45,),

(mp56,),(mp62,),(mp127,),(mp128,),(mp129,),(mp1210,),(mp1211,),
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(mp78,),(mp89,),(mp910,),(mp1011,),(mp711,),(mp211,),(mp27,),

(mp711,),(mp116,),(mp610,),(mp1011,),(mp105,),(mp56,),(mp59,),

(mp94,),(mp73,),(mp38,),(mp84,),)

frame_edges_instance=frame_instance.edges.findAt((mp12,),(mp13,),(mp14,),

(mp15,),(mp16,),(mp23,),(mp34,),(mp45,),

(mp56,),(mp62,),(mp127,),(mp128,),(mp129,),(mp1210,),(mp1211,),

(mp78,),(mp89,),(mp910,),(mp1011,),(mp711,),(mp211,),(mp27,),

(mp711,),(mp116,),(mp610,),(mp1011,),(mp105,),(mp56,),(mp59,),

(mp94,),(mp73,),(mp38,),(mp84,),)

if rays_select == 1:

rays_edges_instance=rays_instance.edges.findAt((fc123,),(fc134,),(fc145,),

(fc156,),(fc162,),(fc1278,),

(fc1289,),(fc12910,),(fc121011,),(fc12117,),(fc723,),(fc378,),(fc834,),

(fc489,),(fc945,),(fc5910,),(fc1056,),(fc61011,),(fc1126,),(fc2711,),)

rays_vertices_instance=rays_instance.vertices.findAt((fc123,),(fc134,),

(fc145,),(fc156,),(fc162,),(fc1278,),(fc1289,),

(fc12910,),(fc121011,),(fc12117,),(fc723,),(fc378,),(fc834,),

(fc489,),(fc945,),(fc5910,),(fc1056,),(fc61011,),(fc1126,),(fc2711,),)

if stiff_select == 1:

stiff_edges_instance=frame.edges.findAt((np[0],),(np[1],),(np[2],),(np[3],),(np[4],),(np[5],),

(np[6],),(np[7],),(np[8],),(np[9],),(np[10],),

(np[11],),(np[12],),(np[13],),(np[14],),(np[15],),(np[16],),(np[17],),(np[18],),(np[19],),(np[20],),

(np[21],),(np[22],),(np[23],),(np[24],),(np[25],),(np[26],),(np[27],),(np[28],),(np[29],),(np[30],),

(np[31],),(np[32],),(np[33],),(np[34],),(np[35],),(np[36],),(np[37],),(np[38],),(np[39],),(np[40],),

(np[41],),(np[42],),(np[43],),(np[44],),(np[45],),(np[46],),(np[47],),(np[48],),(np[49],),(np[50],),

(np[51],),(np[52],),(np[53],),(np[54],),(np[55],),(np[56],),(np[57],),(np[58],),(np[59],),)

stiff_frame_edges_instance=frame.edges.findAt((np[0],),(np[1],),(np[2],),(np[3],),(np[4],),(np[5],),

(np[6],),(np[7],),(np[8],),(np[9],),(np[10],),

(np[11],),(np[12],),(np[13],),(np[14],),(np[15],),(np[16],),(np[17],),(np[18],),(np[19],),(np[20],),

(np[21],),(np[22],),(np[23],),(np[24],),(np[25],),(np[26],),(np[27],),(np[28],),(np[29],),(np[30],),

(np[31],),(np[32],),(np[33],),(np[34],),(np[35],),(np[36],),(np[37],),(np[38],),(np[39],),(np[40],),

(np[41],),(np[42],),(np[43],),(np[44],),(np[45],),(np[46],),(np[47],),(np[48],),(np[49],),(np[50],),

(np[51],),(np[52],),(np[53],),(np[54],),(np[55],),(np[56],),(np[57],),(np[58],),(np[59],),

(mp12,),(mp13,),(mp14,),(mp15,),(mp16,),(mp23,),(mp34,),(mp45,),

(mp56,),(mp62,),(mp127,),(mp128,),(mp129,),(mp1210,),(mp1211,),

(mp78,),(mp89,),(mp910,),(mp1011,),(mp711,),(mp211,),(mp27,),

(mp711,),(mp116,),(mp610,),(mp1011,),(mp105,),(mp56,),(mp59,),

(mp94,),(mp73,),(mp38,),(mp84,),)

stiff_frame_vertices_instance=frame.edges.findAt((fc123,),(fc134,),(fc145,),(fc156,),(fc162,),

(fc1278,),(fc1289,),(fc12910,),(fc121011,),(fc12117,),(fc723,),(fc378,),(fc834,),

(fc489,),(fc945,),(fc5910,),(fc1056,),(fc61011,),(fc1126,),(fc2711,),

(p1,),(p2,),(p3,),(p4,),(p5,),(p6,),(p7,),(p8,),(p9,),(p10,),(p11,),(p12,),)

# Spherical System ***************************************************************************************

spherical_id = root_assembly.DatumCsysByThreePoints(coordSysType=SPHERICAL,name=’Spherical’,

origin=(0.0,0.0,0.0),point1=(1.0,0.0,0.0),point2=(0.0,1.0,0.0)).id

# Spherical Datum Convertion ****************************************************************

##datumid_skin=skin.DatumCsysByThreePoints(coordSysType=SPHERICAL,name=’Spherical’,

## origin=(0.0,0.0,0.0),point1=(1.0,0.0,0.0),point2=(0.0,1.0,0.0)).id

##skin.MaterialOrientation(

## additionalRotationField=’’,additionalRotationType=ROTATION_NONE,angle=0.0,axis=AXIS_3,

## fieldName=’’,

## localCsys=skin.datums[datumid_skin],orientationType=SYSTEM,region=Region(faces=skin_faces))

##

##datumid_frame=frame.DatumCsysByThreePoints(coordSysType=SPHERICAL,name=’Spherical’,

## origin=(0.0,0.0,0.0),point1=(1.0,0.0,0.0),point2=(0.0,1.0,0.0)).id
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##frame.MaterialOrientation(

## additionalRotationField=’’,additionalRotationType=ROTATION_NONE,angle=0.0,axis=AXIS_3,

## fieldName=’’,

## localCsys=frame.datums[datumid_frame],orientationType=SYSTEM,region=Region(edges=frame_edges))

##

##mdb.models[model_name].rootAssembly.regenerate()

# Constraint *******************************************************************************

if stiff_select == 1:

# Add constraint to connect stiffeners to the skin

else:

mdb.models[model_name].Tie(adjust=ON, master=Region(edges=frame_edges_instance),

name=’Tie Constraint 1’, positionToleranceMethod=COMPUTED,constraintEnforcement=NODE_TO_SURFACE,

slave=Region(edges=skin_edges_instance),thickness=ON, tieRotations=rotations)

if rays_select == 1:

mdb.models[model_name].Tie(adjust=ON, master=Region(faces=skin_faces_instance),

name=’Tie Constraint 2’, positionToleranceMethod=COMPUTED,constraintEnforcement=NODE_TO_SURFACE,

slave=Region(vertices=rays_vertices_instance),thickness=ON, tieRotations=rotations)

#Step **************************************************************************************

if buckle == 1:

mdb.models[model_name].BuckleStep(maxIterations=buck_max_Iter,name=stepname,

numEigen=buck_num_Eigen,previous=’Initial’,vectors=buck_num_vectors)

elif stabilization == 1:

mdb.models[model_name].StaticStep(initialInc=initial_inc,maxInc=max_inc,

minInc=min_inc,maxNumInc=maxnuminc,name=stepname,nlgeom=nonlinear_effects,previous=’Initial’,

continueDampingFactors=False,adaptiveDampingRatio=stabilization_ratio,matrixStorage=UNSYMMETRIC,

stabilizationMagnitude=stabilization_magn,stabilizationMethod=DISSIPATED_ENERGY_FRACTION,

timeIncrementationMethod=increment_method)

elif step_type == 1:

mdb.models[model_name].StaticRiksStep(initialArcInc=initial_ArcInc,maxLPF=max_LPF,

minArcInc=min_ArcInc,maxArcInc=max_ArcInc,maxNumInc=maxnuminc,name=stepname,matrixStorage=UNSYMMETRIC,

nlgeom=nonlinear_effects,timeIncrementationMethod=increment_method,previous=’Initial’)

else:

mdb.models[model_name].StaticStep(initialInc=initial_inc,maxInc=max_inc,

minInc=min_inc,maxNumInc=maxnuminc,name=stepname,nlgeom=nonlinear_effects,

timeIncrementationMethod=increment_method,previous=’Initial’)

if buckle == 1:

buckle = 1

else:

mdb.models[model_name].steps[stepname].control.setValues(

allowPropagation=OFF, discontinuous=ON, displacementField=(0.005, 0.01,

0.0, 0.0, 0.02, 1e-05, 0.001, 1e-08, 1.0, 1e-05, 1e-12),

hydrostaticFluidPressureField=(0.005, 0.01, 0.0, 0.0, 0.02, 1e-05, 0.001,

1e-08, 1.0, 1e-05), lineSearch=(10.0, 1.0, 0.0001, 0.25, 0.01),

resetDefaultValues=OFF, rotationField=(0.005, 0.01, 0.0, 0.0, 0.02, 1e-05,

0.001, 1e-08, 1.0, 1e-05), timeIncrementation=(8.0, 10.0, 9.0, 16.0, 10.0,

4.0, 12.0, 20.0, 6.0, 3.0, 50.0, 0.5, 0.5, 0.75, 0.85, 0.25, 0.25, 1.5,

0.75))

#BC ****************************************************************************************

mdb.models[model_name].DisplacementBC(amplitude=UNSET,createStepName=

stepname,distributionType=UNIFORM,fieldName=’’,fixed=OFF,localCsys=None,name=’BCbottom’,

region=Region(vertices=frame_instance.vertices.findAt((p12,),)),

u1=0.0,u2=0.0) #,u3=0.0,ur1=0.0,ur2=0.0,ur3=0.0) ## Bottom BC (all DOFs)

mdb.models[model_name].DisplacementBC(amplitude=UNSET,createStepName=
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stepname,distributionType=UNIFORM,fieldName=’’,fixed=OFF,localCsys=None,name=’BCtop’,

region=Region(vertices=frame_instance.vertices.findAt((p1,),)),u1=0.0,u2=0.0) ## Bottom BC (u1=u2=0)

# Mesh **************************************************************************************

# Beam

mdb.models[model_name].rootAssembly.seedEdgeByNumber(constraint=FINER,

edges=frame_edges_instance,number=frame_seed_number)

mdb.models[model_name].rootAssembly.setElementType(elemTypes=(ElemType(

elemCode=frame_element_type,elemLibrary=STANDARD),),regions=(frame_edges_instance,))

# Skin

mdb.models[model_name].rootAssembly.seedEdgeByNumber(constraint=FINER,

edges=skin_edges_instance,number=skin_seed_number)

mdb.models[model_name].rootAssembly.setMeshControls(elemShape=skin_element_shape,

regions=skin_faces_instance)

mdb.models[model_name].rootAssembly.setElementType(elemTypes=(ElemType(elemCode=skin_element_type1,

elemLibrary=STANDARD),ElemType(elemCode=skin_element_type2,elemLibrary=STANDARD,

secondOrderAccuracy=OFF)), regions=(skin_faces_instance,))

# Rays

if rays_select == 1:

mdb.models[model_name].rootAssembly.seedEdgeByNumber(constraint=FINER,

edges=rays_edges_instance,number=rays_seed_number)

mdb.models[model_name].rootAssembly.setElementType(elemTypes=(ElemType(

elemCode=rays_element_type,elemLibrary=STANDARD),),regions=(rays_edges_instance,))

# Stiffners

if stiff_select == 1:

for i in range(0,len(np)):

root_assembly.seedEdgeByNumber(constraint=FINER,

edges=frame_instance.edges.findAt((np[i],)),number=stiff_seed_number)

root_assembly.setElementType(elemTypes=(ElemType(elemCode=stiff_element_type, elemLibrary=

STANDARD),),regions=(frame_instance.edges.findAt((np[i],)),))

#Meshes Instances

mdb.models[model_name].rootAssembly.generateMesh(regions=(frame_instance,))

mdb.models[model_name].rootAssembly.generateMesh(regions=(skin_instance,))

if rays_select == 1:

mdb.models[model_name].rootAssembly.generateMesh(regions=(rays_instance,))

# Load / Displacement Controlled BC *******************************************************************

fc = [(fc123),(fc134),(fc145),(fc156),(fc162),(fc1278),(fc1289),

(fc12910),(fc121011),(fc12117),(fc723),(fc378),(fc834),

(fc489),(fc945),(fc5910),(fc1056),(fc61011),(fc1126),(fc2711)]

allNodes = skin_instance.nodes

delta = 1e-6

if disp_control == 1:

for i in range(0,len(fc)):

root_assembly.ReferencePoint(point=fc[i])

myNodes = allNodes.getByBoundingSphere(center = fc[i],radius=delta)

root_assembly.Set(name=’FC-Set’+str(i), nodes=myNodes)

mdb.models[model_name].DisplacementBC(amplitude=UNSET,createStepName=

stepname,distributionType=UNIFORM,fieldName=’’,fixed=OFF,

localCsys=root_assembly.datums[spherical_id],name=’BC Disp Controlled’+str(i),

region=root_assembly.sets[’FC-Set’+str(i)],

u1=d)
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else:

#Pressure Load

mdb.models[model_name].Pressure(amplitude=UNSET,createStepName=

stepname,distributionType=UNIFORM,field=’’,magnitude=P,name=’Pressure Towards Center 1’,

region=Region(side1Faces=skin_instance.faces.findAt((fc1278,),(fc1289,),(fc12910,),(fc121011,),

(fc12117,),(fc834,),(fc945,),(fc1056,),)))

mdb.models[model_name].Pressure(amplitude=UNSET,createStepName=

stepname,distributionType=UNIFORM,field=’’,magnitude=P,name=’Pressure Towards Center 2’,

region=Region(side2Faces=skin_instance.faces.findAt((fc123,),(fc134,),(fc145,),(fc156,),(fc162,),

(fc723,),(fc378,),(fc489,),(fc5910,),(fc61011,),(fc1126,),(fc2711,),)))

# Field Outputs ******************************************************************************************

mdb.models[model_name].FieldOutputRequest(name=’FO-WholeModel’,createStepName=stepname,

variables=(’U’,’S’,’NFORC’,’E’,’P’))

del mdb.models[model_name].fieldOutputRequests[’F-Output-1’]

# Job ****************************************************************************************************

mdb.Job(atTime=None, contactPrint=OFF, description=’’,echoPrint=OFF,explicitPrecision=SINGLE,

getMemoryFromAnalysis=False,historyPrint=OFF,memory=memory_usage,memoryUnits=MEGA_BYTES,

model=model_name,modelPrint=OFF,multiprocessingMode=DEFAULT,name=job_name,nodalOutputPrecision=FULL,

numCpus=num_cores,numDomains=num_cores,numGPUs=num_GPUs,queue=None,scratch=’’,type=ANALYSIS,

userSubroutine=’’,waitHours=0, waitMinutes=0)

# Submission *********************************************************************************************

mdb.jobs[job_name].submit(consistencyChecking=OFF)

mdb.jobs[job_name].waitForCompletion()

# Elements Close to the Vertices *************************************************************************

allElements1 = frame_instance.elements

allElements2 = skin_instance.elements

delta = 2e-2

g = 0; q = 0; frame_elements = []; skin_elements = [];

for i in range(0,len(p_array)):

myElements1 = allElements1.getByBoundingSphere(center = p_array[i],radius=delta)

for j in myElements1:

frame_elements.append(j.label)

myElements2 = allElements2.getByBoundingSphere(center = p_array[i],radius=delta)

for j in myElements2:

skin_elements.append(j.label)

# Writes the Elements #s close to the vertices

f = open(’results_elements_in_vertices_frame.dat’,’w’)

f.write(’Element #s close to the vertices\n\n’)

for j in frame_elements:

f.write(’%d\n’%(j))

f.close()

f = open(’results_elements_in_vertices_skin.dat’,’w’)

f.write(’Element #s close to the vertices\n\n’)

for j in skin_elements:

f.write(’%d\n’%(j))

f.close()
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B.6 Output Extractor Example

The following extractor code pertains to the icosahedron model.

# -*- coding: mbcs -*-

import os

from part import*

from material import*

from section import*

from assembly import*

from step import*

from interaction import*

from load import*

from mesh import*

from job import*

from sketch import*

from visualization import*

from connectorBehavior import*

from odbAccess import *

from abaqusConstants import *

from odbMaterial import *

from odbSection import *

session.journalOptions.setValues(replayGeometry=COORDINATE, recoverGeometry=COORDINATE)

# Sets Working Directory *************************************************************************

os.chdir(path)

# Load variables *************************************************************************

execfile(’Var_icosahedron_output.py’)

# Extract Outputs ********************************************************************************

# Opens the ODB and establishes the frame

odb=session.openOdb(name=job_name_odb, readOnly=False)

assembly = odb.rootAssembly

# Writes the Mesh Information for each Instance

f = open(’results_meshdata.dat’,’w’)

# Writes the element connectivity per instance

f.write(’ELEMENT CONNECTIVITY\n’)

f.write(’Instance Number Type Connectivity\n’)

for name, instance in assembly.instances.items():

for element in instance.elements:

f.write(’%s ’%(element.instanceName))

f.write(’%5d%8s’ % (element.label, element.type),)

for nodeNum in element.connectivity:

f.write(’ %4d’ % nodeNum,)

f.write(’\n’)

f.write(’\n’)

f.close()

# Writes nodes coordinates for each instance in separate files

for name, instance in assembly.instances.items():

f = open(’results_’ + str(name) +’_nodes_coordinates.dat’,’w’)
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f.write(’%s ***************************************\n’ % (name))

if instance.embeddedSpace == THREE_D:

f.write(’# X Y Z\n’)

for node in instance.nodes:

f.write(’%d ’%(node.label))

f.write(’%.5f %.5f %.5f\n’%(node.coordinates[0],node.coordinates[1],node.coordinates[2]))

else:

f.write(’# X Y\n’)

for node in instance.nodes:

f.write(’%d ’%(node.label))

f.write(’%.5f %.5f %.5f\n’%(node.coordinates[0],node.coordinates[1],node.coordinates[2]))

f.write(’\n’)

f.close()

if buckle == 1:

# Buckling Eigen Values

f = open(’buckling_eigen_values.dat’,’w’)

for num in odb.steps[stepname].frames:

f.write(’%s\n’%(num.description))

else:

# Writes the Displacement for each instance for each Frame

f = open(’results_U.dat’,’w’)

f.write(’LPF(or increment) Instance Node U1 U2 U3\n’)

for frame in odb.steps[stepname].frames:

lpf = frame.frameValue # load factor

for node in frame.fieldOutputs[’U’].values:

f.write(’%f ’%(lpf))

f.write(’ %s ’%(node.instance.name))

f.write(’ %d ’%(node.nodeLabel))

f.write(’ %.12e %.12e %.12e\n’%(node.dataDouble[0],node.dataDouble[1],node.dataDouble[2]))

f.close()

# Writes the Nodal Forces for each instance for each Frame

f = open(’results_NF.dat’,’w’)

f.write(’LPF(or increment) Instance Node NF1

NF2 NF3 NF4 NF5 NF6\n’)

for frame in odb.steps[stepname].frames:

lpf = frame.frameValue # load factor

nf1 = frame.fieldOutputs[’NFORC1’].values

nf2 = frame.fieldOutputs[’NFORC2’].values

nf3 = frame.fieldOutputs[’NFORC3’].values

nf4 = frame.fieldOutputs[’NFORC4’].values

nf5 = frame.fieldOutputs[’NFORC5’].values

nf6 = frame.fieldOutputs[’NFORC6’].values

for node in xrange(len(nf1)):

f.write(’%f ’%(lpf))

f.write(’ %s ’%(nf1[node].instance.name))

f.write(’ %d ’%(nf1[node].nodeLabel))

f.write(’ %.12e %.12e %.12e %.12e %.12e %.12e\n’%(nf1[node].data,nf2[node].data,

nf3[node].data,nf4[node].data,nf5[node].data,nf6[node].data))

f.close()

# Writes elements stress S1, S2, S3, Mises, Tresca for each instance for each Frame

f = open(’results_S.dat’,’w’)

f.write(’LPF(or increment) Instance Element S1 S2
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S3 Mises Spress\n’)

for frame in odb.steps[stepname].frames:

lpf = frame.frameValue # load factor

for element in frame.fieldOutputs[’S’].values:

f.write(’%f ’%(lpf))

f.write(’ %s ’%(element.instance.name))

f.write(’ %d ’%(element.elementLabel))

f.write(’ %.3f %.3f %.3f %.3f %.3f\n’%(element.data[0],element.data[1],element.data[2],

element.mises,element.press))

f.close()

# Writes the Strain Energy versus Time for the Whole Model

f = open(’results_SE.dat’,’w’)

energy = odb.steps[stepname].historyRegions[’Assembly ASSEMBLY’].historyOutputs[’ALLSE’]

f.write(’Strain Energy versus Time for the whole model\n’)

f.write(’Time Strain Energy\n’)

for time in energy.data:

f.write(’%f %.20f\n’%(time[0],time[1],))

f.close()

odb.close()

B.7 Finite Elements Settings, Material Inputs and Geometric Inputs Example

The following code defines the FE settings, the material inputs and the geometric

inputs that establish the icosahedron model.

p_array = [(0.000000,0.000000,0.152400),(0.136311,0.000000,0.068155),(0.042122,0.129639,0.068155),

(-0.110278,0.080121,0.068155),(-0.110278,-0.080121,0.068155),(0.042122,-0.129639,0.068155),

(0.110278,0.080121,-0.068155),(-0.042122,0.129639,-0.068155),(-0.136311,0.000000,-0.068155),

(-0.042122,-0.129639,-0.068155),(0.110278,-0.080121,-0.068155),(0.000000,0.000000,-0.152400),]

k = [(1,2,3),(1,3,4),(1,4,5),(1,5,6),(1,6,2),(12,7,8),(12,8,9),(12,9,10),(12,10,11),(12,11,7),(7,2,3),

(3,7,8),(8,3,4),(4,8,9),(9,4,5),(5,9,10),(10,5,6),(6,10,11),(11,2,6),(2,7,11),]

fc = [(0.059478,0.043213,0.096237),(-0.022718,0.069920,0.096237),(-0.073518,0.000000,0.096237),

(-0.022718,-0.069920,0.096237),(0.059478,-0.043213,0.096237),(0.022718,0.069920,-0.096237),

(-0.059478,0.043213,-0.096237),(-0.059478,-0.043213,-0.096237),(0.022718,-0.069920,-0.096237),

(0.073518,-0.000000,-0.096237),(0.096237,0.069920,0.022718),(0.036759,0.113133,-0.022718),

(-0.036759,0.113133,0.022718),(-0.096237,0.069920,-0.022718),(-0.118955,0.000000,0.022718),

(-0.096237,-0.069920,-0.022718),(-0.036759,-0.113133,0.022718),(0.036759,-0.113133,-0.022718),

(0.096237,-0.069920,0.022718),(0.118955,-0.000000,-0.022718),]

np = [(0.029739,0.021607,0.124318),(0.097894,0.021607,0.082196),(0.050800,0.086426,0.082196),

(-0.011359,0.034960,0.124318),(0.009702,0.099780,0.082196),(-0.066498,0.075021,0.082196),

(-0.036759,0.000000,0.124318),(-0.091898,0.040061,0.082196),(-0.091898,-0.040061,0.082196),

(-0.011359,-0.034960,0.124318),(-0.066498,-0.075021,0.082196),(0.009702,-0.099780,0.082196),

(0.029739,-0.021607,0.124318),(0.050800,-0.086426,0.082196),(0.097894,-0.021607,0.082196),

(0.011359,0.034960,-0.124318),(0.066498,0.075021,-0.082196),(-0.009702,0.099780,-0.082196),

(-0.029739,0.021607,-0.124318),(-0.050800,0.086426,-0.082196),(-0.097894,0.021607,-0.082196),
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(-0.029739,-0.021607,-0.124318),(-0.097894,-0.021607,-0.082196),(-0.050800,-0.086426,-0.082196),

(0.011359,-0.034960,-0.124318),(-0.009702,-0.099780,-0.082196),(0.066498,-0.075021,-0.082196),

(0.036759,-0.000000,-0.124318),(0.091898,-0.040061,-0.082196),(0.091898,0.040061,-0.082196),

(0.103257,0.075021,-0.022718),(0.116274,0.034960,0.045437),(0.069180,0.099780,0.045437),

(0.039441,0.121386,0.022718),(0.073518,0.096627,-0.045437),(-0.002682,0.121386,-0.045437),

(-0.039441,0.121386,-0.022718),(0.002682,0.121386,0.045437),(-0.073518,0.096627,0.045437),

(-0.103257,0.075021,0.022718),(-0.069180,0.099780,-0.045437),(-0.116274,0.034960,-0.045437),

(-0.127633,0.000000,-0.022718),(-0.114617,0.040061,0.045437),(-0.114617,-0.040061,0.045437),

(-0.103257,-0.075021,0.022718),(-0.116274,-0.034960,-0.045437),(-0.069180,-0.099780,-0.045437),

(-0.039441,-0.121386,-0.022718),(-0.073518,-0.096627,0.045437),(0.002682,-0.121386,0.045437),

(0.039441,-0.121386,0.022718),(-0.002682,-0.121386,-0.045437),(0.073518,-0.096627,-0.045437),

(0.103257,-0.075021,-0.022718),(0.116274,-0.034960,0.045437),(0.069180,-0.099780,0.045437),

(0.127633,-0.000000,0.022718),(0.114617,0.040061,-0.045437),(0.114617,-0.040061,-0.045437),]

p1=(0.000000,0.000000,0.152400)

p2=(0.136311,0.000000,0.068155)

p3=(0.042122,0.129639,0.068155)

p4=(-0.110278,0.080121,0.068155)

p5=(-0.110278,-0.080121,0.068155)

p6=(0.042122,-0.129639,0.068155)

p7=(0.110278,0.080121,-0.068155)

p8=(-0.042122,0.129639,-0.068155)

p9=(-0.136311,0.000000,-0.068155)

p10=(-0.042122,-0.129639,-0.068155)

p11=(0.110278,-0.080121,-0.068155)

p12=(0.000000,0.000000,-0.152400)

mp12=(0.068155,0.000000,0.110278)

mp13=(0.021061,0.064820,0.110278)

mp23=(0.089217,0.064820,0.068155)

mp13=(0.021061,0.064820,0.110278)

mp14=(-0.055139,0.040061,0.110278)

mp34=(-0.034078,0.104880,0.068155)

mp14=(-0.055139,0.040061,0.110278)

mp15=(-0.055139,-0.040061,0.110278)

mp45=(-0.110278,0.000000,0.068155)

mp15=(-0.055139,-0.040061,0.110278)

mp16=(0.021061,-0.064820,0.110278)

mp56=(-0.034078,-0.104880,0.068155)

mp16=(0.021061,-0.064820,0.110278)

mp12=(0.068155,0.000000,0.110278)

mp62=(0.089217,-0.064820,0.068155)

mp127=(0.055139,0.040061,-0.110278)

mp128=(-0.021061,0.064820,-0.110278)

mp78=(0.034078,0.104880,-0.068155)

mp128=(-0.021061,0.064820,-0.110278)

mp129=(-0.068155,0.000000,-0.110278)

mp89=(-0.089217,0.064820,-0.068155)

mp129=(-0.068155,0.000000,-0.110278)

mp1210=(-0.021061,-0.064820,-0.110278)

mp910=(-0.089217,-0.064820,-0.068155)

mp1211=(0.055139,-0.040061,-0.110278)

mp1210=(-0.021061,-0.064820,-0.110278)

mp1110=(0.034078,-0.104880,-0.068155)

mp127=(0.055139,0.040061,-0.110278)

mp1211=(0.055139,-0.040061,-0.110278)

mp711=(0.110278,-0.000000,-0.068155)

mp211=(0.123294,-0.040061,0.000000)
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mp27=(0.123294,0.040061,0.000000)

mp711=(0.110278,-0.000000,-0.068155)

mp112=(0.123294,-0.040061,0.000000)

mp116=(0.076200,-0.104880,0.000000)

mp26=(0.089217,-0.064820,0.068155)

mp610=(-0.000000,-0.129639,0.000000)

mp611=(0.076200,-0.104880,0.000000)

mp1011=(0.034078,-0.104880,-0.068155)

mp105=(-0.076200,-0.104880,0.000000)

mp106=(-0.000000,-0.129639,0.000000)

mp56=(-0.034078,-0.104880,0.068155)

mp59=(-0.123294,-0.040061,0.000000)

mp510=(-0.076200,-0.104880,0.000000)

mp910=(-0.089217,-0.064820,-0.068155)

mp94=(-0.123294,0.040061,0.000000)

mp95=(-0.123294,-0.040061,0.000000)

mp45=(-0.110278,0.000000,0.068155)

mp48=(-0.076200,0.104880,0.000000)

mp49=(-0.123294,0.040061,0.000000)

mp89=(-0.089217,0.064820,-0.068155)

mp83=(0.000000,0.129639,0.000000)

mp84=(-0.076200,0.104880,0.000000)

mp34=(-0.034078,0.104880,0.068155)

mp37=(0.076200,0.104880,0.000000)

mp38=(0.000000,0.129639,0.000000)

mp78=(0.034078,0.104880,-0.068155)

mp72=(0.123294,0.040061,0.000000)

mp73=(0.076200,0.104880,0.000000)

mp23=(0.089217,0.064820,0.068155)

fc123=(0.059478,0.043213,0.096237)

fc134=(-0.022718,0.069920,0.096237)

fc145=(-0.073518,0.000000,0.096237)

fc156=(-0.022718,-0.069920,0.096237)

fc162=(0.059478,-0.043213,0.096237)

fc1278=(0.022718,0.069920,-0.096237)

fc1289=(-0.059478,0.043213,-0.096237)

fc12910=(-0.059478,-0.043213,-0.096237)

fc121011=(0.022718,-0.069920,-0.096237)

fc12117=(0.073518,-0.000000,-0.096237)

fc723=(0.096237,0.069920,0.022718)

fc378=(0.036759,0.113133,-0.022718)

fc834=(-0.036759,0.113133,0.022718)

fc489=(-0.096237,0.069920,-0.022718)

fc945=(-0.118955,0.000000,0.022718)

fc5910=(-0.096237,-0.069920,-0.022718)

fc1056=(-0.036759,-0.113133,0.022718)

fc61011=(0.036759,-0.113133,-0.022718)

fc1126=(0.096237,-0.069920,0.022718)

fc2711=(0.118955,-0.000000,-0.022718)

disp_control = 0

P=101325.000000

d=-5.000000e-03

hollow_profile = 1

frame_beam_radius = 1.945217e-03

frame_beam_thickness = 9.726084e-05
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frame_density = 970.000000

frame_poisson = 0.330000

frame_modulus = 1.720000e+11

frame_seed_number = 18

frame_element_type = B32

skin_thickness = 1.178366e-05

skin_density = 1650.000000

skin_poisson = 0.200000

skin_modulus = 1.000000e+12

skin_seed_number = 18

skin_element_type1 = M3D3

skin_element_type2 = M3D3

skin_element_shape = TRI

skin_section_idealization = NO_IDEALIZATION

skin_section_location = MIDDLE_SURFACE

membrane = 1

no_stiffness_skin = 0

rays_select = 0

hollow_profile_rays = 1

rays_beam_radius = 0.000000e+00

rays_beam_thickness = 0.000000e+00

rays_density = 1650.000000

rays_poisson = 0.200000

rays_modulus = 1.000000e+12

rays_seed_number = 18

rays_element_type = B32

stiff_select = 0

hollow_profile_stiff = 1

stiff_beam_radius = 0.000000e+00

stiff_beam_thickness = 0.000000e+00

stiff_density = 1650.000000

stiff_poisson = 0.200000

stiff_modulus = 1.000000e+12

stiff_seed_number = 18

stiff_element_type = B32

rotations = OFF

model_name = ’icosahedron-Model’

job_name = ’icosahedron-Job’

job_name_odb = ’icosahedron-Job.odb’

# Step Information

buckle = 0

stabilization = 1

step_type = 0

nonlinear_effects = ON

increment_method = AUTOMATIC

stepname = ’Nonlinear-Static,General-wStabi’

# If Buckle

buck_num_Eigen = 5

buck_max_Iter = 30

buck_num_vectors = 30
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# If General

initial_inc = 1.000000e+00

max_inc = 1.000000e+00

min_inc = 1.000000e-36

stabilization_ratio = 0.0500000000

stabilization_magn = 0.0002000000

# If Riks

initial_ArcInc = 1.000000e-01

min_ArcInc = 1.000000e-12

max_ArcInc = 1.000000e+00

maxnuminc = 100000000

max_LPF = 2.000000e+00

num_cores = 1

memory_usage = 1024

num_GPUs = 0
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Appendix C: Matlab Codes

The Matlab codes shown here are related to the icosahedron model, but similar

codes where used to analysis the other models.

C.1 Main Routine: Main.m

% delete(’*.inp’,’*.com’,’*.log’,’*.ipm’,’*.sim’,’*.msg’,...

% ’*.rec’,’*.rpy’,’*.dat’,’*.sta’,’*.prt’,’*.lck’,’*.log’); clear f

clc; clear all; close all

%% Optimization Rutine

% Last updated: Jan 17, 2014

% ************************************************************************

%% Input

I.scratch_folder = ’Temp Scratch Files’; % used to create the scratch folder and the enviroment .env file

% Job Info (Parallel Processing, memory allocation, use of GPUs)

I.job.num_cores = 1; % # of cores used in the analysis

I.job.memory_usage = 1024; % amount of allocated memory, MB

I.job.num_GPUs = 0; % number of GPUs (graphics processing units) used, 0 for none

% Static Step Info

I.step.buckle = 0; % ON(1) / OFF(0), ON disables others

I.step.stabilization = 1; % stabilization ON(1) / OFF(0), ON w/membrane section, ON diables Riks

I.step.step_type = 0; % use Riks(1), use General(0); use General(0) w/membrane section

I.step.nonlinear_effects = ’ON’; % ON or OFF, ON w/membrane section

I.step.increment_method = ’AUTOMATIC’; % Increments (arc length if Riks) method: ’FIXED’ or ’AUTOMATIC’

I.step.maxnuminc = 100000000; % max number of increments, if fixed

% Static Riks

I.step.initial_ArcInc = 0.1; % initial arc length

I.step.min_ArcInc = 1e-12; % minimum arc length

I.step.max_ArcInc = 1; % maximum arc length

I.step.max_LPF = 2; % max load proportionality factor

% Static General

I.step.initial_inc = 1e-3; % starting time increment

I.step.max_inc = 1; % max time increment

I.step.min_inc = 1e-36; % min time increment

I.step.stabilization_ratio = 0.05; % w/membrane only - adaptive stabilization:

% max stabilization/strain energy ratio, default = 0.05

I.step.stabilization_magn = 0.0002; % w/membrane only - dissipated energy fraction, default = 0.0002

% Linear Buckle

I.step.buck_num_Eigen = 5;

I.step.buck_max_Iter = 30;

I.step.buck_num_vectors = 30;

% Load

I.load.disp_control = 1; % displacement(1), load(0) controls

I.load.d = -3e2 ; % m, displacement control BC

I.load.P = 101325; % Pa, sea level pressure (safety factor 1.5)

% Skin Sections
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I.section.no_stiffness_skin = 0; % 0(no) or 1(yes); rigid skin, use surface elements

I.section.membrane = 1; % membrane section (1), shell section (0)

% Shell Only

I.section.skin_section_idealization = ’NO_IDEALIZATION’; % ’MEMBRANE’,’BENDING’,’NO_IDEALIZATION’

I.section.skin_section_location = ’MIDDLE_SURFACE’; % ’MIDDLE_SURFACE’,’TOP_SURFACE’,’BOTTOM_SURFACE’

% Tie Constraint

I.tie.rotations = ’OFF’; % tie rotations between skin/frame

% Mesh

I.mesh.skin_element_type1 = ’M3D3’; % See ’Shell and Membrane Element Library Info.txt’

I.mesh.skin_element_type2 = ’M3D3’;

I.mesh.skin_element_shape = ’TRI’; % Element shape: rectangular or triangular

I.mesh.skin_seed_number = 30 ; % skin # of elements/edge, 30 edges in total

I.mesh.frame_element_type = ’B32’; % need to use beam element type: B31, B32, etc.

I.mesh.frame_seed_number = 30 ; % frame # of elements/edge, 30 edges in total

I.mesh.rays_element_type = ’B32’; % need to use beam element type: B31, B32, etc.

I.mesh.rays_seed_number = 18 ; % rays # of elements/edge, 20 edges in total

I.mesh.stiff_element_type = ’B32’; % need to use beam element type: B31, B32, etc.

I.mesh.stiff_seed_number = 18 ; % rays # of elements/edge, 60 edges in total

% Parameters for W/B ratio calculation

I.W_B.rho = 1.2754; % air density at SL, kg/mˆ3, http://en.wikipedia.org/wiki/Density_of_air

I.W_B.g = 9.81; % acceleration of gravity, m/sˆ2

I.W_B.skin = 0.4; % skin W/B ratio set value

I.W_B.frame = 0.5; % frame W/B ratio set value

I.W_B.rays = 0; % rays W/B ratio set value

I.W_B.stiff = 0; % rays W/B ratio set value

I.W_B.To = 293.15; % K, external temp (altitude dependent)

I.W_B.Ti = To; % K, internal temp (altitude and heat transfer dependent)

I.W_B.Po = 101325; % Pa, external pressure (altitude dependent)

%% Geometry and Material Selection

% Material Selection

% rho nu E Sy ; % Units: kg/mˆ3,-,Pa,Pa

mat1 = [1870 0.3 440e9 3.73e9 ]; % UHM Unidirectional Carbon Epoxy tubes

mat2 = [1560 0.37 303e9 5.8e9 ]; % Zylon

mat3 = [2700 0.12 757e9 75.7e9 ]; % Diamond like Carbon, or Diamond thin film,

% yield aprox Y = E/10: see p1795,’Paper - Diamond like Carbon’ in references

mat4 = [2570 0.33 400e9 3.6e9 ]; % Boron Monofilament, nu guessed

mat5 = [1650 0.2 1000e9 10e9 ]; % Nanocyl NANOCYL¢ NC7000 Thin Multi-Wall Carbon Nanotubes

% , nu aprox: see ’Paper - Study of Poisson Ratios of Graphene and Nanotubes’

mat6 = [1844 0.18 303e9 0.4e9 ]; % Beryllium S-200, Tubing

mat7 = [2650 0.18 379e9 1.7e9 ]; % CoorsTek Boron Carbide Reaction-Bonded Boron Carbide

mat8 = [2800 0.33 738e9 0.14e9 ]; % Vista Metals Duramold-2¢ Cast Aluminum Mold Plate, nu aprox

mat9 = [247 0.33 5.76e9 0.024e9]; % 3A Composites Core Materials BALTEK

% SB.150 Structural End-Grain Balsa, nu aprox

mat10= [970 0.33 172e9 3.0e9 ]; % Honeywell Spectra 1000 Fiber

% Material Assignment

matf = mat10; % assigned frame material (from the selection above)

mats = mat10; % assigned skin material (from the selection above)

matr = mat10; % assigned rays material (from the selection above)

matst= mat10; % assigned stiffners material (from the selection above)

I.materials.frame_density = matf(1); I.materials.frame_poisson = matf(2);

I.materials.frame_modulus = matf(3); I.materials.frame_yield = matf(4);

I.materials.skin_density = mats(1); I.materials.skin_poisson = mats(2);
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I.materials.skin_modulus = mats(3); I.materials.skin_yield = mats(4);

I.materials.rays_density = matr(1); I.materials.rays_poisson = matr(2);

I.materials.rays_modulus = matr(3); I.materials.rays_yield = matr(4);

I.materials.stiff_density = matst(1); I.materials.stiff_poisson = matst(2);

I.materials.stiff_modulus = matst(3); I.materials.stiff_yield = matst(4);

% Geometry (icosahedron)

I.geometry.r = 0.1524; % icosahedron radius, m; 0.1524 m = 1/2 ft

I.geometry.rays = 0; % rays off(0), rays on(1)

I.geometry.stiff = 0; % rays off(0), rays on(1)

I.section.hollow_profile_rays = 1; % Rays beam profile: hollow(1),solid(0); beam t ignored if (0)

I.section.hollow_profile_stiff= 1; % Stiff beam profile: hollow(1),solid(0); beam t ignored if (0)

I.section.hollow_profile = 1; % Frame beam profile: hollow(1),solid(0); beam t ignored if (0)

c1 = 0.05; % frame : if hollow circular beam, t = c*r_beam

c2 = 0.05; % rays : if hollow circular beam, t = c*r_beam

c3 = 0.05; % stiffners : if hollow circular beam, t = c*r_beam

for i = 1

I.geometry.skin_thickness = I.geometry.r*I.W_B.rho*I.W_B.skin/...

(3.77523*I.materials.skin_density); % m, ensures the WB skin set value

if I.section.hollow_profile == 1

I.geometry.frame_beam_radius = I.geometry.r*sqrt(I.W_B.frame*I.W_B.rho/...

(39.0742*(2*c1-c1ˆ2)*I.materials.frame_density)); % meters

I.geometry.frame_beam_thickness = c1*I.geometry.frame_beam_radius; % input

else

I.geometry.frame_beam_radius = sqrt(I.geometry.rˆ2*I.W_B.rho*I.W_B.frame/...

(39.0742*I.materials.frame_density)); % m,

I.geometry.frame_beam_thickness = I.geometry.frame_beam_radius;

end

if I.section.hollow_profile_rays == 1

I.geometry.rays_beam_radius = I.geometry.r*sqrt(I.W_B.rays*I.W_B.rho/...

(19.82*(2*c2-c2ˆ2)*I.materials.rays_density)); % meters

I.geometry.rays_beam_thickness = c2*I.geometry.rays_beam_radius; % input

else

I.geometry.rays_beam_radius = sqrt(I.geometry.rˆ2*I.W_B.rho*I.W_B.rays/...

(19.82*I.materials.rays_density)); % m,

I.geometry.rays_beam_thickness = I.geometry.rays_beam_radius;

end

if I.section.hollow_profile_stiff == 1

I.geometry.stiff_beam_radius = I.geometry.r*sqrt(I.W_B.stiff*I.W_B.rho/...

(45.34*(2*c3-c3ˆ2)*I.materials.stiff_density)); % meters

I.geometry.stiff_beam_thickness = c3*I.geometry.stiff_beam_radius; % input

else

I.geometry.stiff_beam_radius = sqrt(I.geometry.rˆ2*I.W_B.rho*I.W_B.stiff/...

(45.34*I.materials.stiff_density)); % m,

I.geometry.stiff_beam_thickness = I.geometry.stiff_beam_radius;

end

C.2 Icosahedron Coordinates Function: icosahedron coordinates.m

% Outputs the icosahedron vertices cartesian xyz coordinates given the

% radius (r) and frequency(f). f =1 is an 20 triangle/30 edges Icosahedron

% Coding cortesy of Capt Trent Metlen, created on 10/10/2012

% Function created on 08/09/2013
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function [XYZ]=icosahedron_coordinates(r,f)

% Angles in spherical coordinates used to determine icosahedron vertices

phi1=0.4636476090008;

phi2=pi/2-phi1;

theta1=2*pi/5;

% Icosahedron verticies in spherical coordinates

Vp=[0 pi/2;0 phi1;theta1 phi1;2*theta1 phi1;3*theta1 phi1;4*theta1 phi1;

0.5*theta1 -phi1;1.5*theta1 -phi1;2.5*theta1 -phi1;3.5*theta1 -phi1; 4.5*theta1 -phi1;0 -pi/2];

% Basic information on geodesic shape

nV=10*fˆ2+2; %number of vertices

nt=20*fˆ2; %number of triangles

ne=30*fˆ2; %number of edges

% Find all vertices of first 5 major triangles for geoesic sphere

V=[r*ones(nV,1) ones(nV,2)];

V(1,2:3)=Vp(1,:);

V(nV,2:3)=Vp(12,:);

K=1;

for I=1:f

for J=1:I*5

V((K+J),2:3)=[(J-1)*2*pi/(I*5) pi/2-I*phi2/f];

end

J;

K=K+J;

end

% Find all vertices of next 10 major triangles

for I=1:f

for J=1:5*f

V((K+J),2:3)=[I*(pi/(5*f))+(2*pi/(5*f))*(J-1) phi1-2*phi1*I/f];

end

J;

K=K+J;

end

% Find all vertices of last 5 major triangles

for I=1:f

if I<f

for J=1:5*(f-I)

V((K+J),2:3)=[pi/5+(2*pi/(5*(f-I)))*(J-1) -pi/2+phi2-phi2*I/f];

end

K=K+J;

end

end

% Convert from spherical coordinates to cartesian coordinates

[x y z]=sph2cart(V(:,2)’,V(:,3)’,V(:,1)’);

leg=sqrt((x(1)-x(2))ˆ2+(y(1)-y(2))ˆ2+(z(1)-z(2))ˆ2);

% Create xyz matrix in cartesian coordinates

XYZ=[x’ y’ z’];
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C.3 Icosahedron Caller Function 1: icosahedron fea inner.m

% By Adorno-Rodriguez, Ruben

% Last updated: Jan 15, 2014

% Function: runs the icosahedorn FEA model

function [output]=icosahedron_fea_inner(I)

%% Input

% Filename

filename = ’icosahedron’; % I.filename; % .py filename

model_name = [filename,’-Model’];

job_name = [filename,’-Job’];

job_name_odb = [filename,’-Job.odb’];

scratch_folder = I.scratch_folder; % used to create the scratch folder and the enviroment .env file

% Job Info (Parallel Processing, memory allocation, use of GPUs)

num_cores = I.job.num_cores; % # of cores used in the analysis

memory_usage = I.job.memory_usage; % amount of allocated memory, MB

num_GPUs = I.job.num_GPUs; % number of GPUs (graphics processing units) used, 0 for none

% Static Step Information

increment_method = I.step.increment_method; % Increments (arc length if Riks) method: ’FIXED’ or ’AUTOMATIC’

nonlinear_effects = I.step.nonlinear_effects; % ON or OFF

buckle = I.step.buckle; % ON(1) / OFF(0), ON disables others

step_type = I.step.step_type; % use Riks(1), use General(0)

stabilization = I.step.stabilization; % strain energy stabilization ON(1) / OFF(0), ON w/membrane section

% Static Riks

initial_ArcInc = I.step.initial_ArcInc; % initial arc length

min_ArcInc = I.step.min_ArcInc; % minimum arc length

max_ArcInc = I.step.max_ArcInc; % maximum arc length

max_LPF = I.step.max_LPF; % max load proportionality factor

% Static General

initial_inc = I.step.initial_inc; % starting time increment

max_inc = I.step.max_inc; % max time increment

min_inc = I.step.min_inc; % min time increment

maxnuminc = I.step.maxnuminc; % max number of increments

stabilization_ratio = I.step.stabilization_ratio;

stabilization_magn = I.step.stabilization_magn;

% Buckle

buck_num_Eigen = I.step.buck_num_Eigen;

buck_max_Iter = I.step.buck_max_Iter;

buck_num_vectors = I.step.buck_num_vectors;

if buckle == 1

stepname = ’Buckle’;

elseif strcmp(nonlinear_effects,’ON’) && step_type == 1

stepname = ’Nonlinear-Riks’;

stabilization = 0;

elseif strcmp(nonlinear_effects,’ON’) && step_type == 0 && stabilization == 1

stepname = ’Nonlinear-Static,General-wStabi’;

elseif strcmp(nonlinear_effects,’ON’) && step_type == 0 && stabilization == 0

stepname = ’Nonlinear-Static,General’;

elseif strcmp(nonlinear_effects,’OFF’) && step_type == 1

stepname = ’Linear-Riks’;

stabilization = 0;

else

stepname = ’Linear-Static,General’;

end
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% Geometry

r = I.geometry.r; % icosahedron radius, meters

skin_thickness = I.geometry.skin_thickness; % meters

frame_beam_radius = I.geometry.frame_beam_radius ; % meters

frame_beam_thickness = I.geometry.frame_beam_thickness; % meters

rays_select = I.geometry.rays; % rays off(0), rays on(1)

rays_beam_radius = I.geometry.rays_beam_radius ; % meters

rays_beam_thickness = I.geometry.rays_beam_thickness; % meters

stiff_select = I.geometry.stiff; % stiffners off(0), rays on(1)

stiff_beam_radius = I.geometry.stiff_beam_radius ; % meters

stiff_beam_thickness = I.geometry.stiff_beam_thickness; % meters

% Material

frame_density = I.materials.frame_density; % kg/mˆ3

frame_poisson = I.materials.frame_poisson;

frame_modulus = I.materials.frame_modulus; % Pa

frame_yield = I.materials.frame_yield; %Pa

skin_density = I.materials.skin_density; % kg/mˆ3

skin_poisson = I.materials.skin_poisson;

skin_modulus = I.materials.skin_modulus; % Pa

skin_yield = I.materials.skin_yield; %Pa

rays_density = I.materials.rays_density; % kg/mˆ3

rays_poisson = I.materials.rays_poisson;

rays_modulus = I.materials.rays_modulus; % Pa

rays_yield = I.materials.rays_yield; %Pa

stiff_density = I.materials.stiff_density; % kg/mˆ3

stiff_poisson = I.materials.stiff_poisson;

stiff_modulus = I.materials.stiff_modulus; % Pa

stiff_yield = I.materials.stiff_yield; %Pa

% Load

disp_control = I.load.disp_control; % displacement(1), load(0) controls

d = I.load.d; % m, displacement control BC

P = I.load.P; % Pa, sea level pressure

% Frame Profile

hollow_profile = I.section.hollow_profile; % hollow(1),solid(0); beam thickness ignored if (0)

hollow_profile_rays = I.section.hollow_profile_rays; % hollow(1),solid(0); beam thickness ignored if (0)

hollow_profile_stiff = I.section.hollow_profile_stiff; % hollow(1),solid(0); beam thickness ignored if (0)

% Skin Sections

no_stiffness_skin = I.section.no_stiffness_skin;% 0(no) or 1(yes); rigid skin, use surface elements

membrane = I.section.membrane; % membrane section (1), shell section (0)

skin_section_idealization = I.section.skin_section_idealization; % MEMBRANE, BENDING or NO_IDEALIZATION

skin_section_location = I.section.skin_section_location; % ’MIDDLE_SURFACE’, ’TOP_SURFACE’ or ’BOTTOM_SURFACE’

% Tie Constraint

rotations = I.tie.rotations; % tie rotations between skin/frame

% Mesh

skin_seed_number = I.mesh.skin_seed_number ; % size seeding

skin_element_type1 = I.mesh.skin_element_type1; % See ’Shell and Membrane Element Library Info.txt’

skin_element_type2 = I.mesh.skin_element_type2;

skin_element_shape = I.mesh.skin_element_shape; % Element shape: rectangular or triangular

frame_element_type = I.mesh.frame_element_type; % need to use beam element type: B31, B32, etc.

frame_seed_number = I.mesh.frame_seed_number ; % # of elements/edge, 30 edges in total

rays_element_type = I.mesh.rays_element_type; % need to use beam element type: B31, B32, etc.
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rays_seed_number = I.mesh.rays_seed_number ; % # of elements/edge, 20 edges in total

stiff_element_type = I.mesh.stiff_element_type; % need to use beam element type: B31, B32, etc.

stiff_seed_number = I.mesh.stiff_seed_number ; % # of elements/edge, 60 edges in total

%% Geometry Calculations

% Calculates the icosahedron vertices

p=icosahedron_coordinates(r,1);

% Calculates the vertices in cartesian coordinates

c=[1 1 2,1 1 3,1 1 4,1 1 5,1 1 6,12 12 7,12 12 8,12 12 9 ,12 12 11,12 12 7 ,...

2 2 7 ,11 11 2,6 6 10,10 10 5,5 5 9 ,9 9 4,4 4 8,8 8 3,3 3 7,7 7 2;

2 3 3,3 4 4,4 5 5,5 6 6,6 2 2,7 8 8,8 9 9,9 10 10,11 10 10,7 11 11,...

11 7 11,2 6 6,10 11 11,5 6 6,9 10 10,4 5 5,8 9 9,3 4 4,7 8 8,2 3 3]; %connectivity array

t=0.5; % used to select midpoint

for i=1:length(c) %calculates the midpoint

mp(i,:)=[p(c(1,i),1)+t*(p(c(2,i),1)-p(c(1,i),1)),...

p(c(1,i),2)+t*(p(c(2,i),2)-p(c(1,i),2)),...

p(c(1,i),3)+t*(p(c(2,i),3)-p(c(1,i),3))];

end

%Calculates center of each face

k=[1 1 1 1 1 12 12 12 12 12 7 3 8 4 9 5 10 6 11 2 ;

2 3 4 5 6 7 8 9 10 11 2 7 3 8 4 9 5 10 2 7 ;

3 4 5 6 2 8 9 10 11 7 3 8 4 9 5 10 6 11 6 11];

for i=1:length(k)

fc(i,:)=[mean([p(k(1,i),1) p(k(2,i),1) p(k(3,i),1)])...

mean([p(k(1,i),2) p(k(2,i),2) p(k(3,i),2)])...

mean([p(k(1,i),3) p(k(2,i),3) p(k(3,i),3)])];

end

% Calculates center between each face and each vertex

g = 1;

for j=1:length(k)

for i = 1:3

np(g,:)=[p(k(i,j),1)+t*(fc(j,1)-p(k(i,j),1)),...

p(k(i,j),2)+t*(fc(j,2)-p(k(i,j),2)),...

p(k(i,j),3)+t*(fc(j,3)-p(k(i,j),3))];

g = g + 1;

end

end

%Calculates the distance of each edge (to confirm coordinates accuracy)

for i=1:length(c)

edge_length(i)=sqrt((p(c(2,i),1)-p(c(1,i),1))ˆ2+...

(p(c(2,i),2)-p(c(1,i),2))ˆ2+...

(p(c(2,i),3)-p(c(1,i),3))ˆ2);

end

%% Writes variables into Var.py file,which will be read by the main .py file

fid = fopen([’Var_’,filename,’.py’],’w’);

% Arrays

fprintf(fid,’p_array = [’); % writes vertices in a array

for i=1:length(p)

fprintf(fid,’(%0.6f,%0.6f,%0.6f),’,p(i,1),p(i,2),p(i,3));

end

fprintf(fid,’]’);

fprintf(fid,’\r\n\r\n’);

fprintf(fid,’k = [’); % writes faces connectivity array

for i=1:length(k)

fprintf(fid,’(%d,%d,%d),’,k(1,i),k(2,i),k(3,i));

end
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fprintf(fid,’]’);

fprintf(fid,’\r\n\r\n’);

fprintf(fid,’fc = [’); % writes face center array

for i=1:length(k)

fprintf(fid,’(%0.6f,%0.6f,%0.6f),’,fc(i,1),fc(i,2),fc(i,3));

end

fprintf(fid,’]’);

fprintf(fid,’\r\n\r\n’);

fprintf(fid,’np = [’); % writes center between each face and each vertex

for i=1:length(np(:,1))

fprintf(fid,’(%0.6f,%0.6f,%0.6f),’,np(i,1),np(i,2),np(i,3));

end

fprintf(fid,’]’);

fprintf(fid,’\r\n\r\n’);

for i=1:length(p) %writes the vertices

fprintf(fid,’p%d=(%0.6f,%0.6f,%0.6f)\r\n’,i,p(i,1),p(i,2),p(i,3));

end

fprintf(fid,’\r\n’);

for i=1:length(c) % writes the midpoints

fprintf(fid,’mp%d%d=(%0.6f,%0.6f,%0.6f)\r\n’,c(1,i),c(2,i),mp(i,1),mp(i,2),mp(i,3));

end

fprintf(fid,’\r\n’);

for i=1:length(k) % writes the faces centers

fprintf(fid,’fc%d%d%d=(%0.6f,%0.6f,%0.6f)\r\n’,k(1,i),k(2,i),k(3,i),fc(i,1),fc(i,2),fc(i,3));

end

fprintf(fid,’\r\n’);

fprintf(fid,’disp_control = %d\r\n’,disp_control);

fprintf(fid,’P=%0.6f\r\n’,P); % writes the pressure

fprintf(fid,’d=%0.6e’,d); % writes the displacement control BC

fprintf(fid,’\r\n\r\n’);

% Frame

fprintf(fid,’hollow_profile = %d\r\n’,hollow_profile);

fprintf(fid,’frame_beam_radius = %0.6e\r\n’,frame_beam_radius);

fprintf(fid,’frame_beam_thickness = %0.6e\r\n’,frame_beam_thickness);

fprintf(fid,’frame_density = %0.6f\r\n’,frame_density);

fprintf(fid,’frame_poisson = %0.6f\r\n’,frame_poisson);

fprintf(fid,’frame_modulus = %0.6e\r\n’,frame_modulus);

fprintf(fid,’frame_seed_number = %d\r\n’,frame_seed_number);

fprintf(fid,’frame_element_type = %s\r\n \r\n’,frame_element_type);

% Skin

fprintf(fid,’skin_thickness = %0.6e\r\n’,skin_thickness);

fprintf(fid,’skin_density = %0.6f\r\n’,skin_density);

fprintf(fid,’skin_poisson = %0.6f\r\n’,skin_poisson);

fprintf(fid,’skin_modulus = %0.6e\r\n’,skin_modulus);

fprintf(fid,’skin_seed_number = %d\r\n’,skin_seed_number);

fprintf(fid,’skin_element_type1 = %s\r\n’,skin_element_type1);

fprintf(fid,’skin_element_type2 = %s\r\n’,skin_element_type2);

fprintf(fid,’skin_element_shape = %s\r\n \r\n’,skin_element_shape);

fprintf(fid,’skin_section_idealization = %s\r\n’,skin_section_idealization);

fprintf(fid,’skin_section_location = %s\r\n’,skin_section_location);

fprintf(fid,’membrane = %d\r\n’,membrane);

fprintf(fid,’no_stiffness_skin = %d\r\n \r\n’,no_stiffness_skin);

% Rays

fprintf(fid,’rays_select = %d\r\n’,rays_select);

fprintf(fid,’hollow_profile_rays = %d\r\n’,hollow_profile_rays);
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fprintf(fid,’rays_beam_radius = %0.6e\r\n’,rays_beam_radius);

fprintf(fid,’rays_beam_thickness = %0.6e\r\n’,rays_beam_thickness);

fprintf(fid,’rays_density = %0.6f\r\n’,rays_density);

fprintf(fid,’rays_poisson = %0.6f\r\n’,rays_poisson);

fprintf(fid,’rays_modulus = %0.6e\r\n’,rays_modulus);

fprintf(fid,’rays_seed_number = %d\r\n’,rays_seed_number);

fprintf(fid,’rays_element_type = %s\r\n \r\n’,rays_element_type);

% Stiffners

fprintf(fid,’stiff_select = %d\r\n’,stiff_select);

fprintf(fid,’hollow_profile_stiff = %d\r\n’,hollow_profile_stiff);

fprintf(fid,’stiff_beam_radius = %0.6e\r\n’,stiff_beam_radius);

fprintf(fid,’stiff_beam_thickness = %0.6e\r\n’,stiff_beam_thickness);

fprintf(fid,’stiff_density = %0.6f\r\n’,stiff_density);

fprintf(fid,’stiff_poisson = %0.6f\r\n’,stiff_poisson);

fprintf(fid,’stiff_modulus = %0.6e\r\n’,stiff_modulus);

fprintf(fid,’stiff_seed_number = %d\r\n’,stiff_seed_number);

fprintf(fid,’stiff_element_type = %s\r\n \r\n’,stiff_element_type);

% Tie Constraint

fprintf(fid,’rotations = %s\r\n \r\n’,rotations);

% Model names

fprintf(fid,’model_name = ’’%s’’\r\n’,model_name);

fprintf(fid,’job_name = ’’%s’’\r\n’,job_name);

fprintf(fid,’job_name_odb = ’’%s’’\r\n \r\n’,job_name_odb);

% Step Information

fprintf(fid,’# Step Information\r\n’);

fprintf(fid,’buckle = %d\r\n’,buckle);

fprintf(fid,’stabilization = %d\r\n’,stabilization);

fprintf(fid,’step_type = %d\r\n’,step_type);

fprintf(fid,’nonlinear_effects = %s\r\n’,nonlinear_effects);

fprintf(fid,’increment_method = %s\r\n’,increment_method);

fprintf(fid,’stepname = ’’%s’’\r\n’,stepname);

fprintf(fid,’\r\n# If Buckle\r\n’);

fprintf(fid,’buck_num_Eigen = %d\r\n’,buck_num_Eigen);

fprintf(fid,’buck_max_Iter = %d\r\n’,buck_max_Iter);

fprintf(fid,’buck_num_vectors = %d\r\n’,buck_num_vectors);

fprintf(fid,’\r\n# If General\r\n’);

fprintf(fid,’initial_inc = %e\r\n’,initial_inc);

fprintf(fid,’max_inc = %e\r\n’,max_inc);

fprintf(fid,’min_inc = %e\r\n’,min_inc);

fprintf(fid,’stabilization_ratio = %0.10f\r\n’,stabilization_ratio);

fprintf(fid,’stabilization_magn = %0.10f\r\n’,stabilization_magn);

fprintf(fid,’\r\n# If Riks\r\n’);

fprintf(fid,’initial_ArcInc = %e\r\n’,initial_ArcInc);

fprintf(fid,’min_ArcInc = %e\r\n’,min_ArcInc);

fprintf(fid,’max_ArcInc = %e\r\n’,max_ArcInc);

fprintf(fid,’maxnuminc = %d\r\n’,maxnuminc);

fprintf(fid,’max_LPF = %e\r\n \r\n’,max_LPF);

% Job information

fprintf(fid,’num_cores = %d\r\n’,num_cores);

fprintf(fid,’memory_usage = %d\r\n’,memory_usage);

fprintf(fid,’num_GPUs = %d\r\n’,num_GPUs);

% Add the path to the python code to be evaluated

f = fopen([filename,’.py’],’r’); A = fread(f); fclose(f);

f = fopen([’python2abaqus_’,filename,’.py’],’w’);

fprintf(f,’path = ’’%s’’\r\n \r\n’,pwd); % writes the current directory

fwrite(f,A); fclose(f);

% Writes the environment file w/the scratch folder’s directory

f = fopen(’environment.env’,’r’); A = fread(f); fclose(f);
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f = fopen(’abaqus_v6.env’,’w’);

fprintf(f,[’scratch=’’%s\\’,scratch_folder,’’’\r\n \r\n’],pwd); % writes the scratch directory

fwrite(f,A); fclose(f);

%% Runs the Adjusted Script in Abaqus

% warning(’off’,’all’);

% delete(’*.inp’,’*.com’,’*.log’,’*.ipm’,’*.sim’,’*.msg’,...

% ’*.rec’,’*.rpy’,’*.dat’,’*.sta’,’*.prt’,’*.lck’,’*.log’); clear f

% warning(’on’,’all’);

Rmo = ’noGUI’; % No GUI, analysis runs in the background

mo = ’script’; % W/GUI, analysis runs with Abaqus GUI

[status,cmdout] = system([’abaqus cae ’,Rmo,’=python2abaqus_’,filename,’.py’]); % runs the main script

%% Output

output.system.status = status; % 0 if succesful, nonzero otherwise

output.system.cmdout = cmdout; % detailed message

output.geometry.vertices = p; % vertices

output.geometry.midpoints = mp; % edge midpoints

output.geometry.facecenters = fc; % face centers

end

C.4 Icosahedron Caller Function 2: icosahedron fea.m

% By Adorno-Rodriguez, Ruben

% Last updated: Jan 15, 2014

% Function: runs the FEA model of the icosahedron in Abaqus and reads in

% results

function [output]=icosahedron_fea(I)

%% Input

% Static Step Information

step_type = I.step.step_type; % use Riks(1), use General(0)

%% Runs the icosahedron_fea_inner(I) function

% Runs the FEA Analysis

O1 = icosahedron_fea_inner(I);

status = O1.system.status; % 0 if succesful, nonzero otherwise

cmdout = O1.system.cmdout; % detailed message

% If an error occurs, it changes the initial increment on the Newton

% Raphson Step for convergence

if status == 0 % 0(no error),otherwise(error)

disp(’Analysis completed succesfully!’)

else

arc_length = [1e-1 1e-2 1e-3 1e-4 1e-5 1e-6 1e-8]; % arc length sweep for Riks

increment = [1e-1 1e-2 1e-3 1e-4 1e-5 1e-6 1e-8]; % increment sweep for Newthon Raphson

j = 1; % initializes counter

while status ˜= 0 % 0(no error),otherwise(error)

disp(’Abaqus Message:’); disp(cmdout);

if step_type == 0 % Riks(1), Newton Raphson General(0)

fprintf(’Step failed, initial increment changed to %.1e.\n’,increment(j))

I.step.initial_inc = increment(j); % starting time increment

else

fprintf(’Step failed, initial arc length changed to %.1e.\n’,arc_length(j))

I.step.initial_ArcInc = arc_length(j);

end

fprintf(’Analysis reinitialized\n’)
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O1 = icosahedron_fea_inner(I);

status = O1.system.status; % 0 if succesful, nonzero otherwise

cmdout = O1.system.cmdout; % detailed message

if j == length(increment) || j == length(arc_length) % stops while loop at last entry

disp(’All the initial increments in the increment vector failed. Function will stop’)

break

end

j = j + 1;

if status == 0 % 0(no error),otherwise(error)

disp(’Analysis completed succesfully!’)

end

end

end

%% Reads-in and Saves the FEA outputs

% Geometry

output.geometry.vertices = O1.geometry.vertices; % vertices

output.geometry.midpoints = O1.geometry.midpoints; % edge midpoints

output.geometry.facecenters = O1.geometry.facecenters; % face centers

% Nodes coordinates

% Frame Instance

f = fopen(’results_Frame Instance_nodes_coordinates.dat’);

coordinates = textscan(f,’%.1f %.5f %.5f %.5f’,’HeaderLines’,2);

fclose(f);

coordinates_frame = cell2mat(coordinates); % node #, x, y, z

% Skin Instance

f = fopen(’results_Skin Instance_nodes_coordinates.dat’);

coordinates = textscan(f,’%.1f %.5f %.5f %.5f’,’HeaderLines’,2);

fclose(f);

coordinates_skin = cell2mat(coordinates); % node #, x, y, z

% Mesh Details

f = fopen(’results_meshdata.dat’);

mesh = textscan(f,’%s %*s %f %s %f %f %f %*[ˆ\n]’,’HeaderLines’,2);

fclose(f);

s = cell2mat(mesh(:,2)); % element #

s1 = s(strcmpi(mesh{:,1},{’Frame’}) == 1,:);

s2 = s(strcmpi(mesh{:,1},{’Skin’}) == 1,:);

output.mesh.nodes = coordinates_frame(end,1) + coordinates_skin(end,1);

output.mesh.elements = max(s1) + max(s2);

% System

output.system.status = status; % 0 if succesful, nonzero otherwise

output.system.cmdout = cmdout; % detailed message

% Eigen values

if I.step.buckle == 1

f = fopen(’buckling_eigen_values.dat’,’r’);

A = textscan(f,’%s %s %s %s %f’,’HeaderLines’,1);

fclose(f);

output.buckling = [[1:length(A{end})]’ A{end}]; % frame #,eigen value:Pcrit = Po*eigen(i)

else

% Nodes Displacements

f = fopen(’results_U.dat’);

displacement = textscan(f,’%f %s %*s %f %f %f %f %*[ˆ\n]’,’HeaderLines’,1);

fclose(f);
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inc = unique(displacement{:,1}); % increment (General) or LPF (Riks)

output.inc(:,1) = inc;

d = cell2mat(displacement(:,[1 3:end])); % increment, node #, U1, U2, U3

d1 = d(strcmpi(displacement{:,2},{’Frame’}) == 1,:);

d2 = d(strcmpi(displacement{:,2},{’Skin’}) == 1,:);

for i = 1:length(inc)

output.frame(i,1).U = [coordinates_frame d1(inc(i) == d1(:,1),3:end)]; % node #, x, y, z, U1, U2, U3

output.skin (i,1).U = [coordinates_skin d2(inc(i) == d2(:,1),3:end)]; % node #, x, y, z, U1, U2, U3

end

% Nodal Forces

f = fopen(’results_NF.dat’);

nodalforces = textscan(f,’%f %s %*s %f %f %f %f %f %f %f %*[ˆ\n]’,’HeaderLines’,1);

fclose(f);

nf = cell2mat(nodalforces(:,[1 3:end])); % increment, node #, U1, U2, U3

nf1 = nf(strcmpi(nodalforces{:,2},{’Frame’}) == 1,:);

nf2 = nf(strcmpi(nodalforces{:,2},{’Skin’}) == 1,:);

for i = 1:length(inc)

nf1i = nf1(inc(i) == nf1(:,1),2:end);

nf2i = nf2(inc(i) == nf2(:,1),2:end);

for j = 1:max(nf1i(:,1))

k = find(nf1i(:,1) == j);

if length(k) == 1

nf1ij(j,:) = nf1i(k,:);

else

nf1ij(j,:) = mean(nf1i(k,:));

end

end

for j = 1:max(nf2i(:,1))

k = find(nf2i(:,1) == j);

if length(k) == 1

nf2ij(j,:) = nf2i(k,:);

else

nf2ij(j,:) = mean(nf2i(k,:));

end

end

output.frame(i,1).NF = [coordinates_frame nf1ij(:,2:end)]; % node #, x, y, z, NF1, NF2, NF3, NF4, NF5, NF6

output.skin (i,1).NF = [coordinates_skin nf2ij(:,2:end)]; % node #, x, y, z, NF1, NF2, NF3, NF4, NF5, NF6

end

% Elements Stresses

f = fopen(’results_S.dat’);

stress = textscan(f,’%f %s %*s %f %f %f %f %f %*[ˆ\n]’,’HeaderLines’,1);

fclose(f);

s = cell2mat(stress(:,[1 3:end])); % increment, element #, S1, S2, S3, Mises, Spressure

s1 = s(strcmpi(stress{:,2},{’Frame’}) == 1,:);

s2 = s(strcmpi(stress{:,2},{’Skin’}) == 1,:);

for i = 1:length(inc)

output.frame(i,1).S = s1(inc(i) == s1(:,1),2:end); % element #, S1, S2, S3, Mises, Spress

output.skin (i,1).S = s2(inc(i) == s2(:,1),2:end); % element #, S1, S2, S3, Mises, Spress

end

% Strain Energy versus Time

f = fopen(’results_SE.dat’);

strain_energy = textscan(f,’%f %.20f %*[ˆ\n]’,’HeaderLines’,2);

fclose(f);

output.strain_energy = cell2mat(strain_energy); % increment or load factor, strain energy

end
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%% Output Structure Summary

% output

% .system

% .status: 0 if succesful, nonzero otherwise

% .cmdout: detailed message

% .geometry

% .vertices : icosahedron vertices

% .midpoints : edge midpoints

% .facecenters: face centers

% .mesh

% nodes : total # of nodes

% elements: total # of elements

% if buckle == 1

% .buckling: frame #,eigen value:Pcrit = Po*eigen(i)

% else

% .inc: column of increments or load factors

% .frame/skin: for each increment or load factor(i),

% .U : node #, x, y, z, U1, U2, U3 (displacement)

% .NF: node #, x, y, z, NF1, NF2, NF3, NF4, NF5, NF6 (nodal forces)

% .S : elem #, S1, S2, S3, Mises, Spressure (stresses)

% .strain_energy: increment(s) or load factor, strain energy(J)

end

C.5 Icosahedron Importer Function 1: icosahedron fea output1.m

% By Adorno-Rodriguez, Ruben

% Last updated: Jan 15, 2014

% Function: reads the results from the odb file and creates .dat files

function [output]=icosahedron_fea_output1(I)

%% Input

% Filename

filename2 = ’icosahedron_output’;

filename = ’icosahedron’; % I.filename; % .py filename

model_name = [filename,’-Model’];

job_name = [filename,’-Job’];

job_name_odb = [filename,’-Job.odb’];

% Static Step Information

increment_method = I.step.increment_method; % Increments (arc length if Riks) method: ’FIXED’ or ’AUTOMATIC’

nonlinear_effects = I.step.nonlinear_effects; % ON or OFF

buckle = I.step.buckle; % ON(1) / OFF(0), ON disables others

step_type = I.step.step_type; % use Riks(1), use General(0)

stabilization = I.step.stabilization; % strain energy stabilization ON(1) / OFF(0), ON w/membrane section

if buckle == 1

stepname = ’Buckle’;

elseif strcmp(nonlinear_effects,’ON’) && step_type == 1

stepname = ’Nonlinear-Riks’;

stabilization = 0;

elseif strcmp(nonlinear_effects,’ON’) && step_type == 0 && stabilization == 1

stepname = ’Nonlinear-Static,General-wStabi’;

elseif strcmp(nonlinear_effects,’ON’) && step_type == 0 && stabilization == 0

stepname = ’Nonlinear-Static,General’;

elseif strcmp(nonlinear_effects,’OFF’) && step_type == 1
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stepname = ’Linear-Riks’;

stabilization = 0;

else

stepname = ’Linear-Static,General’;

end

%% Writes variables into Var.py file,which will be read by the main .py file

fid = fopen([’Var_’,filename2,’.py’],’w’);

% Model names

fprintf(fid,’job_name_odb = ’’%s’’\r\n \r\n’,job_name_odb);

% Step Information

fprintf(fid,’# Step Information\r\n’);

fprintf(fid,’buckle = %d\r\n’,buckle);

fprintf(fid,’stabilization = %d\r\n’,stabilization);

fprintf(fid,’step_type = %d\r\n’,step_type);

fprintf(fid,’stepname = ’’%s’’\r\n’,stepname);

fprintf(fid,’nonlinear_effects = %s\r\n’,nonlinear_effects);

fclose(fid);

% Add the path to the python code to be evaluated

f = fopen([filename2,’.py’],’r’); A = fread(f); fclose(f);

f = fopen([’python2abaqus_’,filename2,’.py’],’w’);

fprintf(f,’path = ’’%s’’\r\n \r\n’,pwd); % writes the current directory

fwrite(f,A); fclose(f);

%% Runs the Adjusted Script in Abaqus

Rmo = ’noGUI’; % No GUI, analysis runs in the background

mo = ’script’; % W/GUI, analysis runs with Abaqus GUI

[status,cmdout] = system([’abaqus cae ’,Rmo,’=python2abaqus_’,filename2,’.py’]); % runs the main script

delete(’*.rpy’,’*.lck’,’*.log’);

delete([’python2abaqus_’,filename2,’.py’]);

delete([’Var_’,filename2,’.py’]);

%% Output

output.status = status;

output.cmdout = cmdout;

end

C.6 Icosahedron Coordinates Function2: icosahedron output2.m

% By Adorno-Rodriguez, Ruben

% Last updated: Jan 15, 2014

% Function: reads in the results from the .dat files

function [output]=icosahedron_fea_output2(I)

%% Input

% Geometry

r = I.geometry.r; % icosahedron radius, meters

% Static Step Information

step_type = I.step.step_type; % use Riks(1), use General(0)

%% Calculates Geometry

% Calculates the icosahedron vertices

p=icosahedron_coordinates(r,1);

% Calculates the vertices in cartesian coordinates
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c=[1 1 2,1 1 3,1 1 4,1 1 5,1 1 6,12 12 7,12 12 8,12 12 9 ,12 12 11,12 12 7 ,...

2 2 7 ,11 11 2,6 6 10,10 10 5,5 5 9 ,9 9 4,4 4 8,8 8 3,3 3 7,7 7 2;

2 3 3,3 4 4,4 5 5,5 6 6,6 2 2,7 8 8,8 9 9,9 10 10,11 10 10,7 11 11,...

11 7 11,2 6 6,10 11 11,5 6 6,9 10 10,4 5 5,8 9 9,3 4 4,7 8 8,2 3 3]; %connectivity array

t=0.5; % used to select midpoint

for i=1:length(c) %calculates the midpoint

mp(i,:)=[p(c(1,i),1)+t*(p(c(2,i),1)-p(c(1,i),1)),...

p(c(1,i),2)+t*(p(c(2,i),2)-p(c(1,i),2)),...

p(c(1,i),3)+t*(p(c(2,i),3)-p(c(1,i),3))];

end

%Calculates center of each face

k=[1 1 1 1 1 12 12 12 12 12 7 3 8 4 9 5 10 6 11 2 ;

2 3 4 5 6 7 8 9 10 11 2 7 3 8 4 9 5 10 2 7 ;

3 4 5 6 2 8 9 10 11 7 3 8 4 9 5 10 6 11 6 11];

for i=1:length(k)

fc(i,:)=[mean([p(k(1,i),1) p(k(2,i),1) p(k(3,i),1)])...

mean([p(k(1,i),2) p(k(2,i),2) p(k(3,i),2)])...

mean([p(k(1,i),3) p(k(2,i),3) p(k(3,i),3)])];

end

%% Reads-in and Saves the FEA outputs

% Geometry

output.geometry.vertices = p; % vertices

output.geometry.midpoints = mp; % edge midpoints

output.geometry.facecenters = fc; % face centers

% Nodes coordinates

% Frame Instance

f = fopen(’results_Frame Instance_nodes_coordinates.dat’);

coordinates = textscan(f,’%.1f %.5f %.5f %.5f’,’HeaderLines’,2);

fclose(f);

coordinates_frame = cell2mat(coordinates); % node #, x, y, z

% Skin Instance

f = fopen(’results_Skin Instance_nodes_coordinates.dat’);

coordinates = textscan(f,’%.1f %.5f %.5f %.5f’,’HeaderLines’,2);

fclose(f);

coordinates_skin = cell2mat(coordinates); % node #, x, y, z

% Mesh Details

f = fopen(’results_meshdata.dat’);

mesh = textscan(f,’%s %*s %f %s %f %f %f %*[ˆ\n]’,’HeaderLines’,2);

fclose(f);

s = cell2mat(mesh(:,2)); % element #

e1 = s(strcmpi(mesh{:,1},{’Frame’}) == 1,:);

e2 = s(strcmpi(mesh{:,1},{’Skin’}) == 1,:);

output.mesh.nodes = coordinates_frame(end,1) + coordinates_skin(end,1);

output.mesh.elements = max(e1) + max(e2);

% Eigen values

if I.step.buckle == 1

f = fopen(’buckling_eigen_values.dat’,’r’);

A = textscan(f,’%s %s %s %s %f’,’HeaderLines’,1);

fclose(f);

output.buckling = [[1:length(A{end})]’ A{end}]; % frame #,eigen value:Pcrit = Po*eigen(i)

else

% Nodes Displacements
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f = fopen(’results_U.dat’);

displacement = textscan(f,’%f %s %*s %f %f %f %f %*[ˆ\n]’,’HeaderLines’,1);

fclose(f);

inc = unique(displacement{:,1}); % increment (General) or LPF (Riks)

output.inc(:,1) = inc;

d = cell2mat(displacement(:,[1 3:end])); % increment, node #, U1, U2, U3

d1 = d(strcmpi(displacement{:,2},{’Frame’}) == 1,:);

d2 = d(strcmpi(displacement{:,2},{’Skin’}) == 1,:);

for i = 1:length(inc)

a1 = d1(inc(i) == d1(:,1),2:end);

for j = 1:coordinates_frame(end,1)

a2(j,:) = [mean(a1(a1(:,1) == j,2)), mean(a1(a1(:,1) == j,3)),...

mean(a1(a1(:,1) == j,4))];

end

b1 = d2(inc(i) == d2(:,1),2:end);

for j = 1:coordinates_skin(end,1)

b2(j,:) = [mean(b1(b1(:,1) == j,2)), mean(b1(b1(:,1) == j,3)),...

mean(b1(b1(:,1) == j,4))];

end

output.frame(i,1).U = [coordinates_frame a2]; % node #, x, y, z, U1, U2, U3

output.skin (i,1).U = [coordinates_skin b2]; % node #, x, y, z, U1, U2, U3

end

% Nodal Forces

f = fopen(’results_NF.dat’);

nodalforces = textscan(f,’%f %s %*s %f %f %f %f %f %f %f %*[ˆ\n]’,’HeaderLines’,1);

fclose(f);

nf = cell2mat(nodalforces(:,[1 3:end])); % increment, node #, U1, U2, U3

nf1 = nf(strcmpi(nodalforces{:,2},{’Frame’}) == 1,:);

nf2 = nf(strcmpi(nodalforces{:,2},{’Skin’}) == 1,:);

for i = 1:length(inc)

nf1i = nf1(inc(i) == nf1(:,1),2:end);

nf2i = nf2(inc(i) == nf2(:,1),2:end);

for j = 1:max(nf1i(:,1))

k = find(nf1i(:,1) == j);

if length(k) == 1

nf1ij(j,:) = nf1i(k,:);

else

nf1ij(j,:) = mean(nf1i(k,:));

end

end

for j = 1:max(nf2i(:,1))

k = find(nf2i(:,1) == j);

if length(k) == 1

nf2ij(j,:) = nf2i(k,:);

else

nf2ij(j,:) = mean(nf2i(k,:));

end

end

output.frame(i,1).NF = [coordinates_frame nf1ij(:,2:end)]; % node #, x, y, z, NF1, NF2, NF3, NF4, NF5, NF6

output.skin (i,1).NF = [coordinates_skin nf2ij(:,2:end)]; % node #, x, y, z, NF1, NF2, NF3, NF4, NF5, NF6

end

% Elements Stresses

f = fopen(’results_S.dat’);

stress = textscan(f,’%f %s %*s %f %f %f %f %f %f %*[ˆ\n]’,’HeaderLines’,1);

fclose(f);

s = cell2mat(stress(:,[1 3:end])); % increment, element #, S1, S2, S3, Mises, Spressure
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s1 = s(strcmpi(stress{:,2},{’Frame’}) == 1,:);

s2 = s(strcmpi(stress{:,2},{’Skin’}) == 1,:);

for i = 1:length(inc)

output.frame(i,1).S = s1(inc(i) == s1(:,1),2:end); % element #, S1, S2, S3, Mises, Spress

output.skin (i,1).S = s2(inc(i) == s2(:,1),2:end); % element #, S1, S2, S3, Mises, Spress

end

% Strain Energy versus Time

f = fopen(’results_SE.dat’);

strain_energy = textscan(f,’%f %.20f %*[ˆ\n]’,’HeaderLines’,2);

fclose(f);

output.strain_energy = cell2mat(strain_energy); % increment or load factor, strain energy

% W/B including Volume Reduction

To = I.W_B.To; % K, external temp (altitude dependent)

Ti = I.W_B.Ti; % K, internal temp (altitude and heat transfer dependent)

Po = I.W_B.Po; % Pa, external pressure (altitude dependent)

R = I.W_B.R ; % J/(kg-K), air specific gas constant

for i = 1:length(inc)

x = output.skin(i).U(:,2);

y = output.skin(i).U(:,3);

z = output.skin(i).U(:,4);

U1 = output.skin(i).U(:,5);

U2 = output.skin(i).U(:,6);

U3 = output.skin(i).U(:,7);

igeom = [x y z]; % coordinates of the initial geometry

fgeom = [x + U1, y + U2, z + U3]; % coordinates of the final geometry

iDT = delaunayTriangulation(igeom);

[iK,iv] = convexHull(iDT); % initial volume was checked againts theory eq.: good!

fDT = delaunayTriangulation(fgeom);

[fK,fv] = convexHull(fDT);

Vframe = 30*pi*(2*I.geometry.frame_beam_radius*I.geometry.frame_beam_thickness-...

I.geometry.frame_beam_thicknessˆ2)*(I.geometry.r/5*sqrt(50-10*sqrt(5))); % frame volume

Vr = iv - fv - Vframe; % volume reduction

Pi = Po - inc(i)*Po; % Pa

output.WB(i) = ((9.5745*I.geometry.skin_thickness*I.geometry.rˆ2*I.materials.skin_density)+...

(99.098*(2*I.geometry.frame_beam_radius*I.geometry.frame_beam_thickness-...

I.geometry.frame_beam_thicknessˆ2)*I.geometry.r*I.materials.frame_density))/...

((2.5362*I.geometry.rˆ3-Vr)*Po/(R*To))+Pi/Po*To/Ti; % final W/B icosahedron

output.graph(i).iDT = iDT;% initial triangulation

output.graph(i).iK = iK; % initial points

output.graph(i).iv = iv; % initial volume

output.graph(i).fDT = fDT;% final triangulation

output.graph(i).fK = fK; % final points

output.graph(i).fv = fv; % final volume

output.Vr(i) = iv - Vr; % volume reduction

end

end

%% Output Structure Summary

% output

% .system

% .status: 0 if succesful, nonzero otherwise

% .cmdout: detailed message

% .geometry

% .vertices : icosahedron vertices

% .midpoints : edge midpoints
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% .facecenters: face centers

% .mesh

% nodes : total # of nodes

% elements: total # of elements

% if buckle == 1

% .buckling: frame #,eigen value:Pcrit = Po*eigen(i)

% else

% .inc: column of increments or load factors

% .frame/skin: for each increment or load factor(i),

% .U : node #, x, y, z, U1, U2, U3 (displacement)

% .NF: node #, x, y, z, NF1, NF2, NF3, NF4, NF5, NF6 (nodal forces)

% .S : elem #, S1, S2, S3, Mises, Spressure (stresses)

% .strain_energy: increment(s) or load factor, strain energy(J)

% .WB: W/B ratio

% .Vr: volume reduction

% .graph(i).iDT: initial triangulation

% .iK : initial points

% .iv : initial volume

% .fDT: final triangulation

% .fK : final points

% .fv : final volume

end
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